Gradient DescentMultiple Regression using Gradient Descent

Rahul Singh rsingh@arrsingh.com

Simple Linear Regression

The Problem Statement:

Simple Linear Regression: Find the values of eta_0 and eta_1 such that the Mean Squared Error (MSE) is minimized.

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

Mean Squared Error (MSE)

$$\frac{1}{2n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

Simple Linear Regression

The Mean Squared Error (MSE) is

$$\frac{1}{2n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Gradient Descent

Gradient Descent: Basic Concept

Gradient Descent continues in this manner until the step size is close to zero or a fixed number of iterations

A linear model in 2 dimensions...

Gradient Descent Algorithm

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Step 5: Go to step 2 and repeat

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1$$

Has 2 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i})^2$$

A linear model in 2 dimensions...

Gradient Descent Algorithm

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$\frac{\partial}{\partial \beta_0} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i})^2$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 \hat{x}_{1i})^2$$

Has 2 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i})^2$$

Compute 2 partial derivatives

A linear model in 2 dimensions...

$\hat{y} = \beta_0 + \beta_1 \hat{x}_1$

Has 2 parameters

And a cost function...

Compute 2 step sizes

Gradient Descent Algorithm

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$step_size_{\beta_0} = \frac{\partial}{\beta_0} MSE \times learning_rate$$

$$step_size_{\beta_1} = \frac{\partial}{\partial \beta_1} MSE \times learning_rate$$

A linear model in 3 dimensions...

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2$$

Has 3 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i})^2$$

Gradient Descent

Gradient Descent Algorithm

Step 1: Start with random values for β_0 , β_1 and β_2

Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 and β_2 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 , β_1 and β_2 by subtracting the step size

A linear model in 3 dimensions...

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2$$

Has 3 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i})^2$$

Compute 3 partial derivatives

Gradient Descent

Gradient Descent Algorithm

Step 1: Start with random values for β_0 , β_1 and β_2

Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 and β_2 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$\frac{\partial}{\partial \beta_0} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i})^2$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i})^2$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i})^2$$

A linear model in 3 dimensions...

Has 3 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i})^2$$

Compute 3 step sizes

Gradient Descent Algorithm

Step 1: Start with random values for β_0 , β_1 and β_2

Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 and β_2 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$step_size_{\beta_0} = \frac{\partial}{\beta_0} MSE \times learning_rate$$

$$step_size_{\beta_1} = \frac{\partial}{\beta_1} MSE \times learning_rate$$

$$step_size_{\beta_2} = \frac{\partial}{\beta_2} MSE \times learning_rate$$

A linear model in 4 dimensions...

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2 + \beta_3 \hat{x}_3$$

Has 4 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i})^2$$

Gradient Descent

Gradient Descent Algorithm

Step 1: Start with random values for β_0 , β_1 , β_2 and β_3

Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 , β_2 and β_3 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 , β_1 , β_2 and β_3 by subtracting the step size

A linear model in 4 dimensions...

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2 + \beta_3 \hat{x}_3$$

Has 4 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i})^2$$

Compute 4 partial derivatives

Gradient Descent

Gradient Descent Algorithm

Step 1: Start with random values for β_0 , β_1 , β_2 and β_3

Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 , β_2 and β_3 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$\frac{\partial}{\partial \beta_0} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i})^2$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i})^2$$

$$\frac{\partial}{\partial \beta_2} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i})^2$$

$$\frac{\partial}{\partial \beta_3} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i})^2$$

A linear model in 4 dimensions...

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2 + \beta_3 \hat{x}_3$$

Has 4 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i})^2$$

Compute 4 step sizes

Gradient Descent

Gradient Descent Algorithm

Step 1: Start with random values for β_0 , β_1 , β_2 and β_3

Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 , β_2 and β_3 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$step_size_{\beta_0} = \frac{\partial}{\beta_0} MSE \times learning_rate$$

$$step_size_{\beta_1} = \frac{\partial}{\beta_1} MSE \times learning_rate$$

$$step_size_{\beta_2} = \frac{\partial}{\beta_2} MSE \times learning_rate$$

$$step_size_{\beta_3} = \frac{\partial}{\partial \beta_3} MSE \times learning_rate$$

16

A linear model in k+1 dimensions...

Gradient Descent

Gradient Descent Algorithm

Step 1: Start with random values for β_0 , β_1 , β_2 and β_3

Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 , β_2 and β_3 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 , β_1 , β_2 and β_3 by subtracting the step size

Step 5: Go to step 2 and repeat

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2 + \beta_3 \hat{x}_3 + \dots + \beta_k \hat{x}_k$$

Has k+1 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i} - \dots - \beta_k \hat{x}_{ki})^2$$

A linear model in k+1 dimensions...

Gradient Descent

Gradient Descent Algorithm

Step 1: Start with random values for β_0 , β_1 , β_2 and β_3

Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 , β_2 and β_3 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$\frac{\partial}{\partial \beta_0} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i} - \dots - \beta_k \hat{x}_{ki})^2$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i} - \dots - \beta_k \hat{x}_{ki})^2$$

$$\frac{\partial}{\partial \beta_2} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i} - \dots - \beta_k \hat{x}_{ki})^2$$

$$\frac{\partial}{\partial \beta_n} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i} - \dots - \beta_k \hat{x}_{ki})^2$$

Has k+1 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i} - \dots - \beta_k \hat{x}_{ki})^2$$

Compute k + 1 partial derivatives

A linear model in k+1 dimensions...

Gradient Descent

Has k+1 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i} - \dots - \beta_k \hat{x}_{ki})^2$$

Compute k + 1 step sizes

Gradient Descent Algorithm

Step 1: Start with random values for β_0 , β_1 , β_2 and β_3

Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 , β_2 and β_3 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$step_size_{\beta_0} = \frac{\partial}{\beta_0} MSE \times learning_rate$$

$$step_size_{\beta_1} = \frac{\partial}{\beta_1} MSE \times learning_rate$$

$$step_size_{\beta_2} = \frac{\partial}{\beta_2} MSE \times learning_rate$$

•

$$step_size_{\beta_k} = \frac{\partial}{\beta_k} MSE \times learning_rate$$

Gradient Descent

Gradient Descent: Basic Concept

 $\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2 + \beta_3 \hat{x}_3 + \ldots + \beta_k \hat{x}_k$ Step 1: Start with random values for β_0 , β_1 , β_2 and β_1

Step 2: Compute the partial derivative of the SSR

Computing k+1 partial derivatives isn't practical

 $\sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x_1}_i - \beta_2 \hat{x_2}_i - \beta_3 \hat{x_3}_i - \dots - \beta_k \hat{x_k}_i)^2$

Compute k+ 1 step sizes

$$step_size_{\beta_2} = \frac{\partial}{\beta_2} SSR \times learning_rate$$
•

$$step_size_{\beta_k} = \frac{\partial}{\beta_k} SSR \times learning_rate$$

that point

ortional

Multiple Regression

Lets use a Matrix

Multiple Regression

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2 + \beta_3 \hat{x}_3 + \dots + \beta_k \hat{x}_k$$

$$\hat{y}_n = 1 \times \beta_0 + \hat{x}_{1n} \times \beta_1 + \hat{x}_{2n} \times \beta_2 + \hat{x}_{3n} \times \beta_3 + \dots + \hat{x}_{kn} \times \beta_k$$

$$\begin{vmatrix} \hat{y}_0 \\ \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \\ \vdots \\ \hat{y}_n \end{vmatrix} = \begin{vmatrix} 1 & \hat{x}_{10} & \hat{x}_{20} & \hat{x}_{30} & \dots & \hat{x}_{k0} \\ 1 & \hat{x}_{11} & \hat{x}_{21} & \hat{x}_{21} & \dots & \hat{x}_{k1} \\ 1 & \hat{x}_{12} & \hat{x}_{22} & \hat{x}_{22} & \dots & \hat{x}_{k2} \\ 1 & \hat{x}_{13} & \hat{x}_{23} & \hat{x}_{23} & \dots & \hat{x}_{k3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \hat{x}_{1n} & \hat{x}_{2n} & \hat{x}_{3n} & \dots & \hat{x}_{kn} \end{vmatrix} \begin{vmatrix} \beta_0 \\ \beta_1 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \vdots \\ \beta_k \end{vmatrix}$$

- 1 dependent variable \hat{y}
- k independent variables \hat{x}_1 , \hat{x}_2 , \hat{x}_3 ... \hat{x}_k k+1 parameters β_0 , β_1 , β_2 , β_3 ... β_k

Multiple Regression

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2 + \beta_3 \hat{x}_3 + \dots + \beta_k \hat{x}_k$$

$$\hat{Y} = \hat{X}\beta$$

 \hat{Y} and \hat{X} are matrices

- 1 dependent variable \hat{y}
- k independent variables \hat{x}_1 , \hat{x}_2 , \hat{x}_3 ... \hat{x}_k k+1 parameters β_0 , β_1 , β_2 , β_3 ... β_k

Multiple Regression

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2 + \beta_3 \hat{x}_3 + \dots + \beta_k \hat{x}_k$$

$$\hat{Y} = \hat{X}\beta$$

The Mean Squared Error (MSE):

$$\frac{1}{2n} \| Y - X\beta \|^2$$

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2$$

Lets compute this matrix derivative

$$\hat{Y} = \hat{X}\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{\partial}{\partial \beta} \frac{1}{2n} \left(\sqrt{(Y - X\beta)^T (Y - X\beta)} \right)^2$$
$$= \frac{1}{2n} \frac{\partial}{\partial \beta} (Y - X\beta)^T (Y - X\beta)$$

$$let A = (Y - X\beta)$$

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A)$$
$$= \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A) \frac{\partial}{\partial \beta} A$$

$$\hat{Y} = \hat{X}\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{\partial}{\partial \beta} \frac{1}{2n} \left(\sqrt{(Y - X\beta)^T (Y - X\beta)} \right)^2$$
$$= \frac{1}{2n} \frac{\partial}{\partial \beta} (Y - X\beta)^T (Y - X\beta)$$

$$let A = (Y - X\beta)$$

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A)$$
$$= \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A) \frac{\partial}{\partial \beta} A$$

Euclidean norm of a matrix: $||A|| = \sqrt{A^T A}$

$$\hat{Y} = \hat{X}\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{\partial}{\partial \beta} \frac{1}{2n} \left(\sqrt{(Y - X\beta)^T (Y - X\beta)} \right)^2$$
$$= \frac{1}{2n} \frac{\partial}{\partial \beta} (Y - X\beta)^T (Y - X\beta)$$

$$let A = (Y - X\beta)$$

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A)$$
$$= \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A) \frac{\partial}{\partial \beta} A$$

Euclidean norm of a matrix: $||A|| = \sqrt{A^T A}$

Chain Rule for Derivative

$$\hat{Y} = \hat{X}\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A) \frac{\partial}{\partial \beta} A$$

$$= \frac{2}{2n} A^T \frac{\partial}{\partial \beta} (Y - X\beta)$$

$$= \frac{1}{n} A^T (-X)$$

$$= \frac{1}{n} (Y - X\beta)^T (-X)$$

$$= -\frac{1}{n} (Y - X\beta)^T (X)$$

$$\hat{Y} = \hat{X}\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A) \frac{\partial}{\partial \beta} A$$

$$= \frac{2}{2n} A^T \frac{\partial}{\partial \beta} (Y - X\beta)$$

$$= \frac{1}{n} A^T (-X)$$

$$= \frac{1}{n} (Y - X\beta)^T (-X)$$

$$= -\frac{1}{n} (Y - X\beta)^T (X)$$

Chain Rule for Derivative

$$\hat{Y} = \hat{X}\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A) \frac{\partial}{\partial \beta} A$$

$$= \frac{2}{2n} A^T \frac{\partial}{\partial \beta} (Y - X\beta)$$

$$= \frac{1}{n} A^T (-X)$$

$$= \frac{1}{n} (Y - X\beta)^T (-X)$$

$$= -\frac{1}{n} (Y - X\beta)^T (X)$$

Chain Rule for Derivative

$$\frac{\partial}{\partial A} A^T A = 2A^T$$

$$\hat{Y} = \hat{X}\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A) \frac{\partial}{\partial \beta} A$$

$$= \frac{2}{2n} A^T \frac{\partial}{\partial \beta} (Y - X\beta)$$

$$= \frac{1}{n} A^T (-X)$$

$$= \frac{1}{n} (Y - X\beta)^T (-X)$$

$$= -\frac{1}{n} (Y - X\beta)^T (X)$$

Chain Rule for Derivative

$$\frac{\partial}{\partial A} A^T A = 2A^T$$

$$\frac{\partial}{\partial \beta}(Y - X\beta) = -X$$

$$\hat{Y} = \hat{X}\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = -\frac{1}{n} (Y - X\beta)^T (X)$$

Gradient Vector: $1 \times (k+1)$ row vector

because...

$$\hat{Y} = \hat{X}\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = -\frac{1}{n} (Y - X\beta)^T (X)$$

Gradient Vector: $1 \times (k+1)$ row vector

because...

$$Y$$
 is a $(n+1) \times 1$ column vector $X\beta$ is a $(n+1) \times 1$ column vector

$$(Y - X\beta)$$
 is a $(n + 1) \times 1$ column vector $(Y - X\beta)^T$ is a $1 \times (n + 1)$ row vector X is a $(n + 1) \times (k + 1)$ matrix

$$(Y - X\beta)^T$$
 is a $1 \times (n+1)$ row vector

$$X$$
 is a $(n + 1) \times (k + 1)$ matrix

$$(Y - X\beta)^T(X)$$
 is a $1 \times (k+1)$ row vector

$$\hat{Y} = \hat{X}\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = -\frac{1}{n} (Y - X\beta)^T (X)$$

Gradient Vector: $1 \times (k+1)$ row vector

Transpose it to get the column vector

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \left(-\frac{1}{n} (Y - X\beta)^T (X) \right)^T$$

$$= -\frac{1}{n}X^T(Y - X\beta)$$

Gradient Vector: $(k + 1) \times 1$ column vector

$$\hat{Y} = \hat{X}\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = -\frac{1}{n} (Y - X\beta)^T (X)$$

Gradient Vector: $1 \times (k+1)$ row vector

Transpose it to get the column vector

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = (-\frac{1}{n} (Y - X\beta)^T (X))^T$$

$$(AB)^T = B^T A^T$$

$$= -\frac{1}{n} X^T (Y - X\beta)$$

Gradient Vector: $(k + 1) \times 1$ column vector

$$\hat{Y} = \hat{X}\beta$$

Multiple Regression

The Mean Squared Error (MSE):

$$\frac{1}{2n} \| Y - X\beta \|^2 \leftarrow Cost Function$$

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = -\frac{1}{n} X^T (Y - X\beta)$$
 Partial Derivative w.r.t β

Lets walk through gradient descent using this matrix representation of the Cost Function and its partial derivative (the gradient vector)

$$\hat{Y} = \hat{X}\beta$$

Cost Function (Mean Squared Error (MSE)):

$$\frac{1}{2n} \| Y - X\beta \|^2$$

Gradient Vector (Partial Derivative w.r.t β):

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = -\frac{1}{n} X^T (Y - X\beta)$$

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β

Step 2: Compute the partial derivative of the cost function w.r.t β

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β by subtracting the step size

$$\hat{Y} = \hat{X}\beta$$

Cost Function (Mean Squared Error (MSE)):

$$\frac{1}{2n} \| Y - X\beta \|^2$$

Gradient Vector (Partial Derivative w.r.t β):

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = -\frac{1}{n} X^T (Y - X\beta)$$

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β

Step 2: Compute the partial derivative of the cost function w.r.t β

$$d_cost = -\frac{1}{n}X^{T}(Y - X\beta)$$

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

$$\hat{Y} = \hat{X}\beta$$

Cost Function (Mean Squared Error (MSE)):

$$\frac{1}{2n} \| Y - X\beta \|^2$$

Gradient Vector (Partial Derivative w.r.t β):

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = -\frac{1}{n} X^T (Y - X\beta)$$

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β

Step 2: Compute the partial derivative of the cost function w.r.t β

$$d_cost = -\frac{1}{n}X^{T}(Y - X\beta)$$

Step 3: Calculate a step size that is proportional to the slope

$$step_size = d_cost \times learning_rate$$

Step 4: Calculate new values for β by subtracting the step size

$$\hat{Y} = \hat{X}\beta$$

Cost Function (Mean Squared Error (MSE)):

$$\frac{1}{2n} \| Y - X\beta \|^2$$

Gradient Vector (Partial Derivative w.r.t β):

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = -\frac{1}{n} X^T (Y - X\beta)$$

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β

Step 2: Compute the partial derivative of the cost function w.r.t β

$$d_cost = -\frac{1}{n}X^{T}(Y - X\beta)$$

Step 3: Calculate a step size that is proportional to the slope

$$step_size = d_cost \times learning_rate$$

Step 4: Calculate new values for β by subtracting the step size

$$\beta = \beta - step_size$$

$$\hat{Y} = \hat{X}\beta$$

Cost Function (Mean Squared Error (MSE)):

$$\frac{1}{2n} \| Y - X\beta \|^2$$

Gradient Vector (Partial Derivative w.r.t β):

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = -\frac{1}{n} X^T (Y - X\beta)$$

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β

Step 2: Compute the partial derivative of the cost function w.r.t β

$$d_cost = -\frac{1}{n}X^{T}(Y - X\beta)$$

Step 3: Calculate a step size that is proportional to the slope

$$step_size = d_cost \times learning_rate$$

Step 4: Calculate new values for β by subtracting the step size

$$\beta = \beta - step_size$$

$$\hat{Y} = \hat{X}\beta$$

Cost Function (Mean Squared Error (MSE)):

$$\frac{1}{2n} \parallel Y - X\beta \parallel^2$$

Gradient Vector (Partial Derivative w.r.t β):

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = -\frac{1}{n} X^T (Y - X\beta)$$

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β

Step 2: Compute the partial derivative of the cost function w.r.t β

Gradient Descent continues in this manner until the step size is close to zero or a fixed number of iterations

Step 4: Calculate new values for β by subtracting the step size

$$\beta = \beta - step_size$$

$$\hat{Y} = \hat{X}\beta$$

Cost Function (Mean Squared Error (MSE)):

$$\frac{1}{2n} \| Y - X\beta \|^2$$

Gradient Vector (Partial Derivative w.r.t β):

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = -\frac{1}{n} X^T (Y - X\beta)$$

Matrix algebra allows us to compute gradients and step sizes in a single computation

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β

Step 2: Compute the partial derivative of the cost function w.r.t β

Gradient Descent continues in this manner until the step size is close to zero or a fixed number of iterations

Step 4: Calculate new values for β by subtracting the step size

$$\beta = \beta - step_size$$

Related Tutorials & Textbooks

Multiple Regression [3]

Multiple regression extends the two dimensional linear model introduced in Simple Linear Regression to k+1 dimensions with one dependent variable, k independent variables and k+1 parameters.

Gradient Descent for Simple Linear Regression

Gradient Descent algorithm for multiple regression and how it can be used to optimize k + 1 parameters for a Linear model in multiple dimensions.

Logistic Regression [4]

An introduction to Logistic Regression. A Logistic Regression model use used to predict a binary value (the dependent variable) for one or more independent variables using a threshold to classify a probability.

Recommended Textbooks

<u>Artificial Intelligence: A Modern Approach</u>

by Peter Norvig, Stuart Russell

For a complete list of tutorials see:

https://arrsingh.com/ai-tutorials