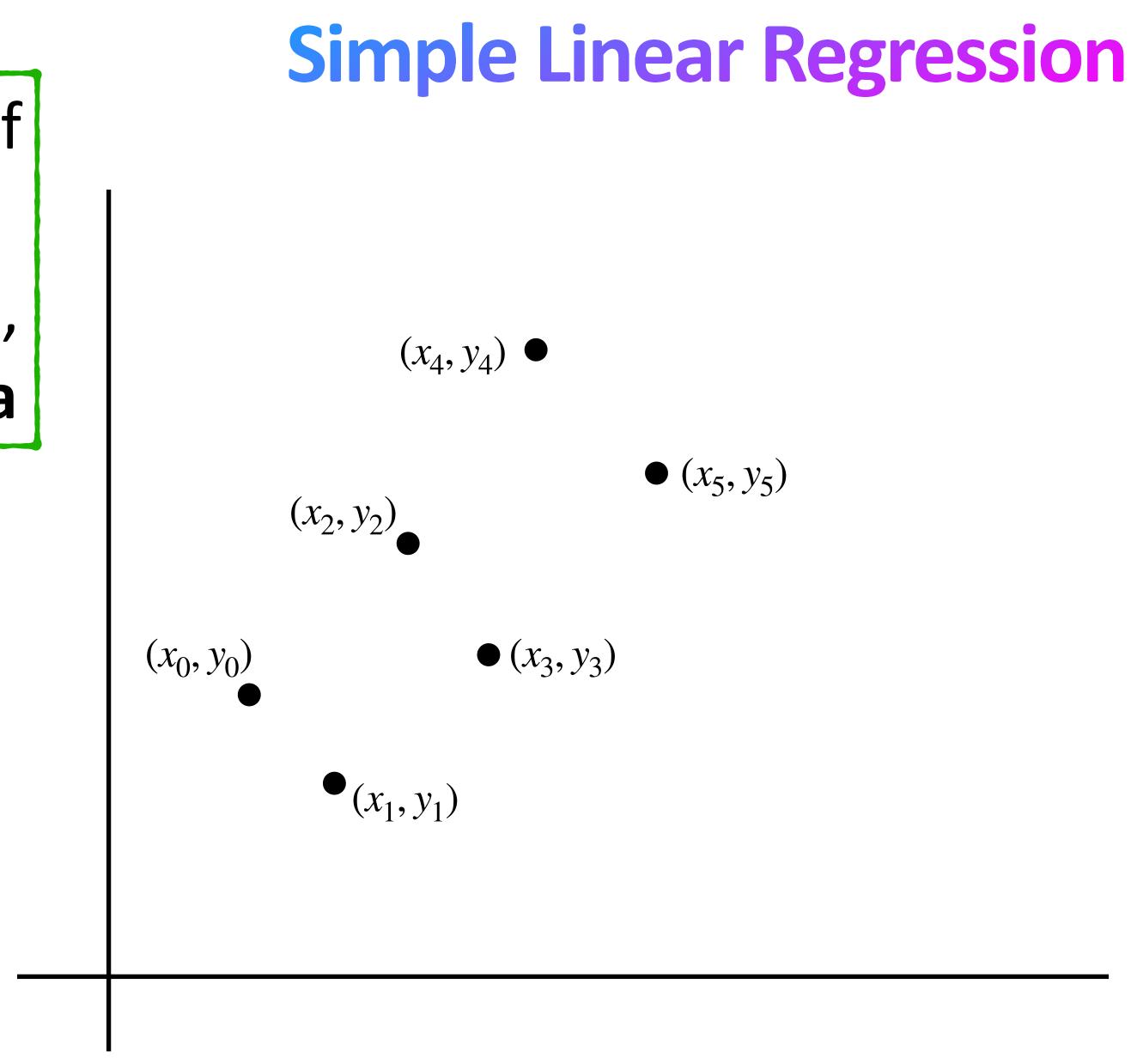
Gradient Descent Simple Linear Regression using Gradient Descent Rahul Singh rsingh@arrsingh.com

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Problem Statement: Given a set of data points in \mathbb{R}^2 , $(x_0, y_0), (x_1, y_1), (x_2, y_2) \dots (x_n, y_n)$,

find the line that **best fits the data**



Height (inches)

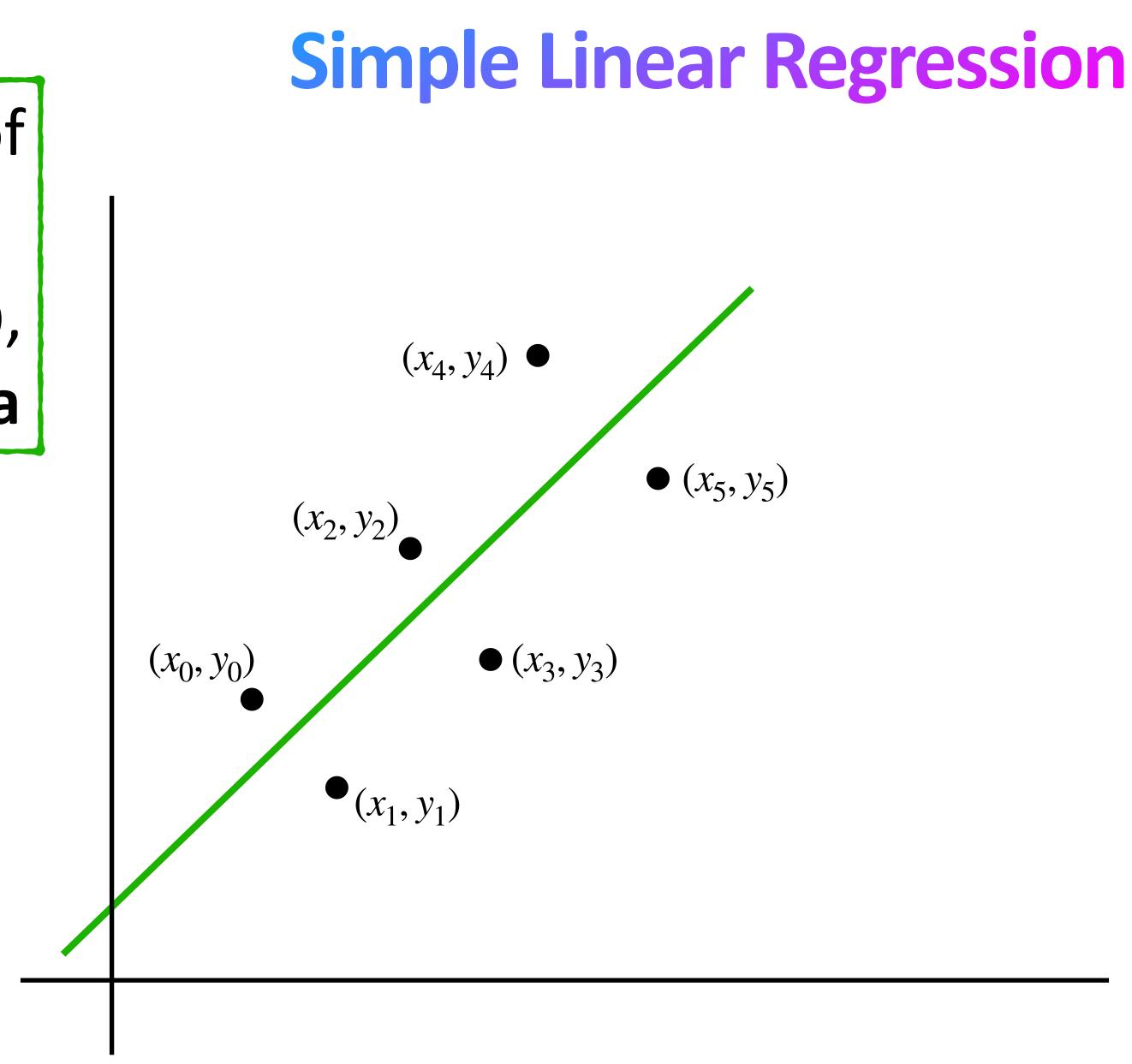
Data is synthetic and not plotted to scale 2

.

Problem Statement: Given a set of data points in \mathbb{R}^2 , $(x_0, y_0), (x_1, y_1), (x_2, y_2) \dots (x_n, y_n),$ find the line that **best fits the data**

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)



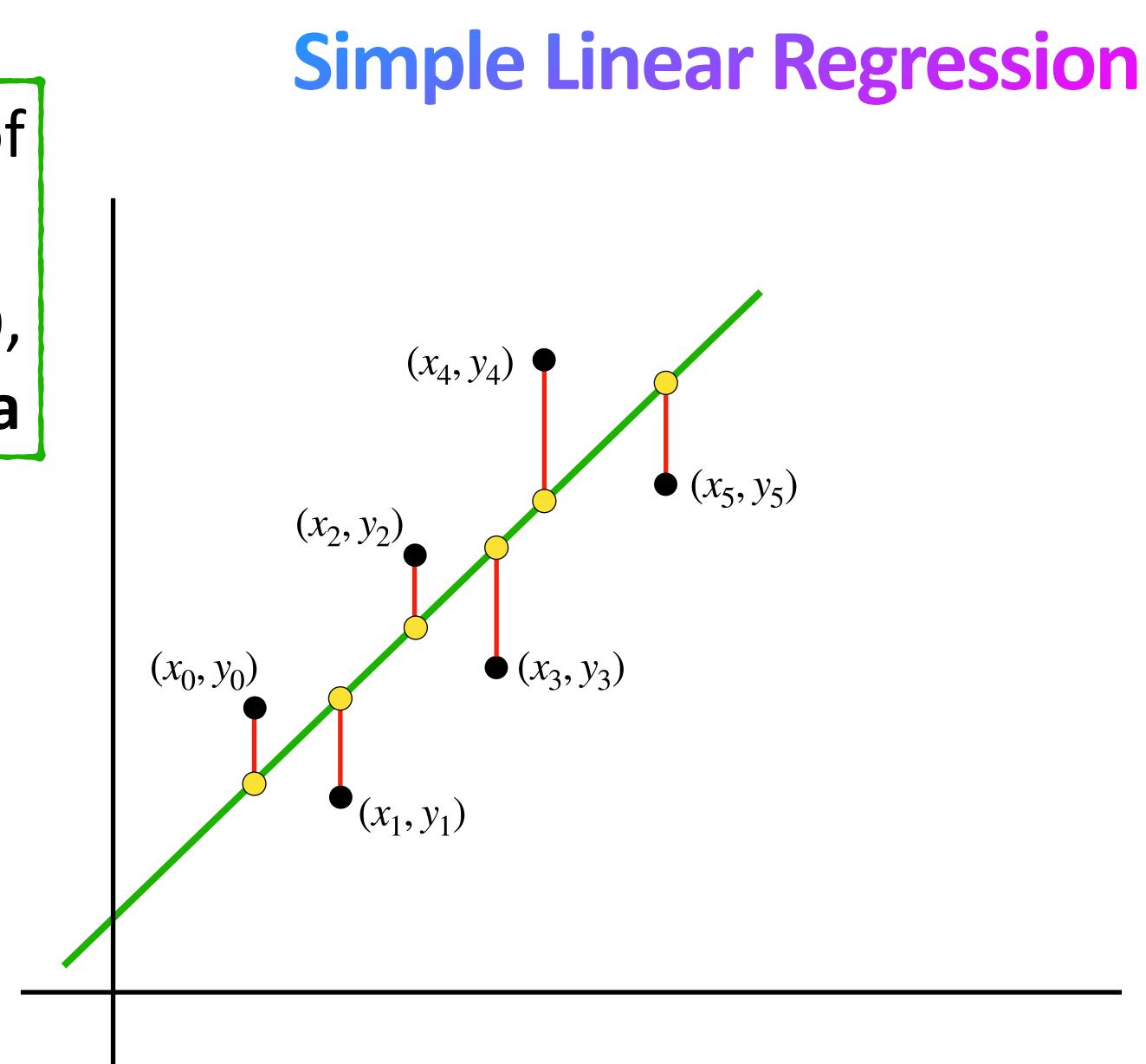
Height (inches)

Problem Statement: Given a set of data points in \mathbb{R}^2 , $(x_0, y_0), (x_1, y_1), (x_2, y_2) \dots (x_n, y_n)$, find the line that **best fits the data**

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$ Mean Squared Error (MSE)

$$\frac{1}{2n}\sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{2n}\sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)



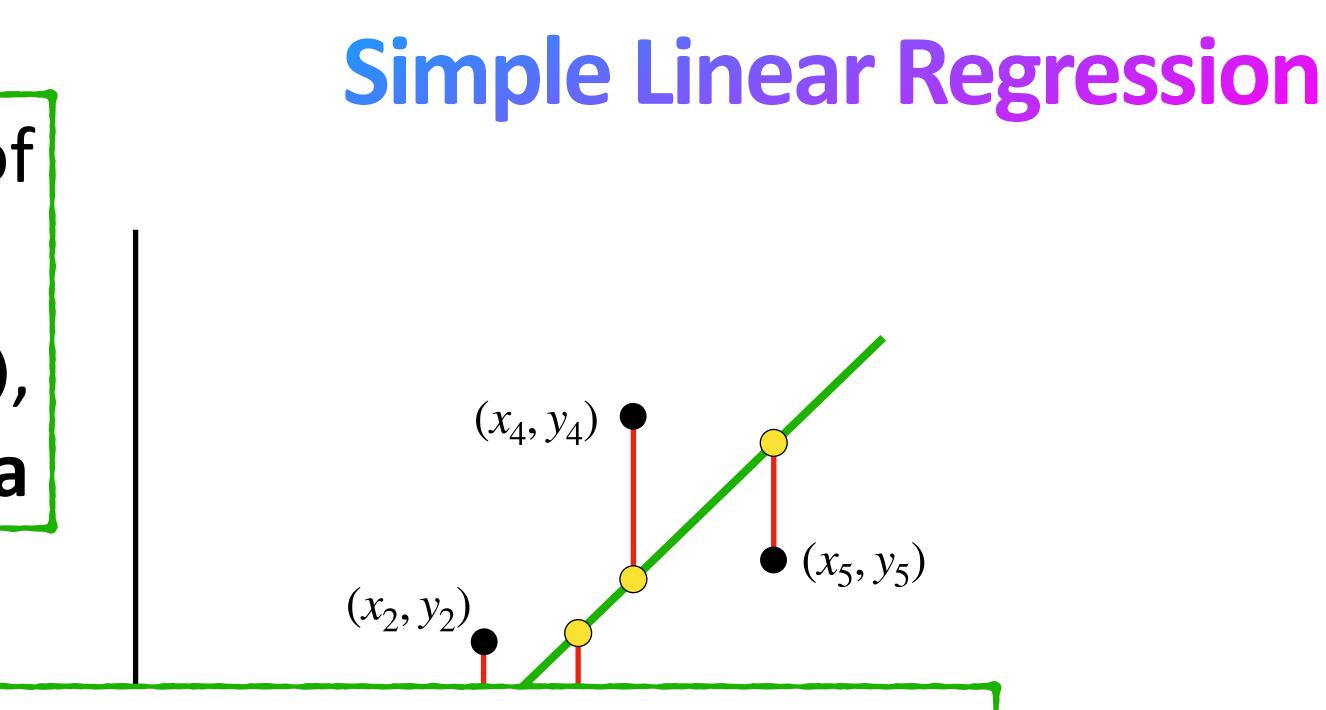
Data is synthetic and not plotted to scale

Problem Statement: Given a set of data points in \mathbb{R}^2 , $(x_0, y_0), (x_1, y_1), (x_2, y_2) \dots (x_n, y_n),$ find the line that **best fits the data**

Mean Squared Error (MSE)

$$\frac{1}{2n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)



Here we divide the total squared error by 2n (rather than n) because it will make the first derivative simpler

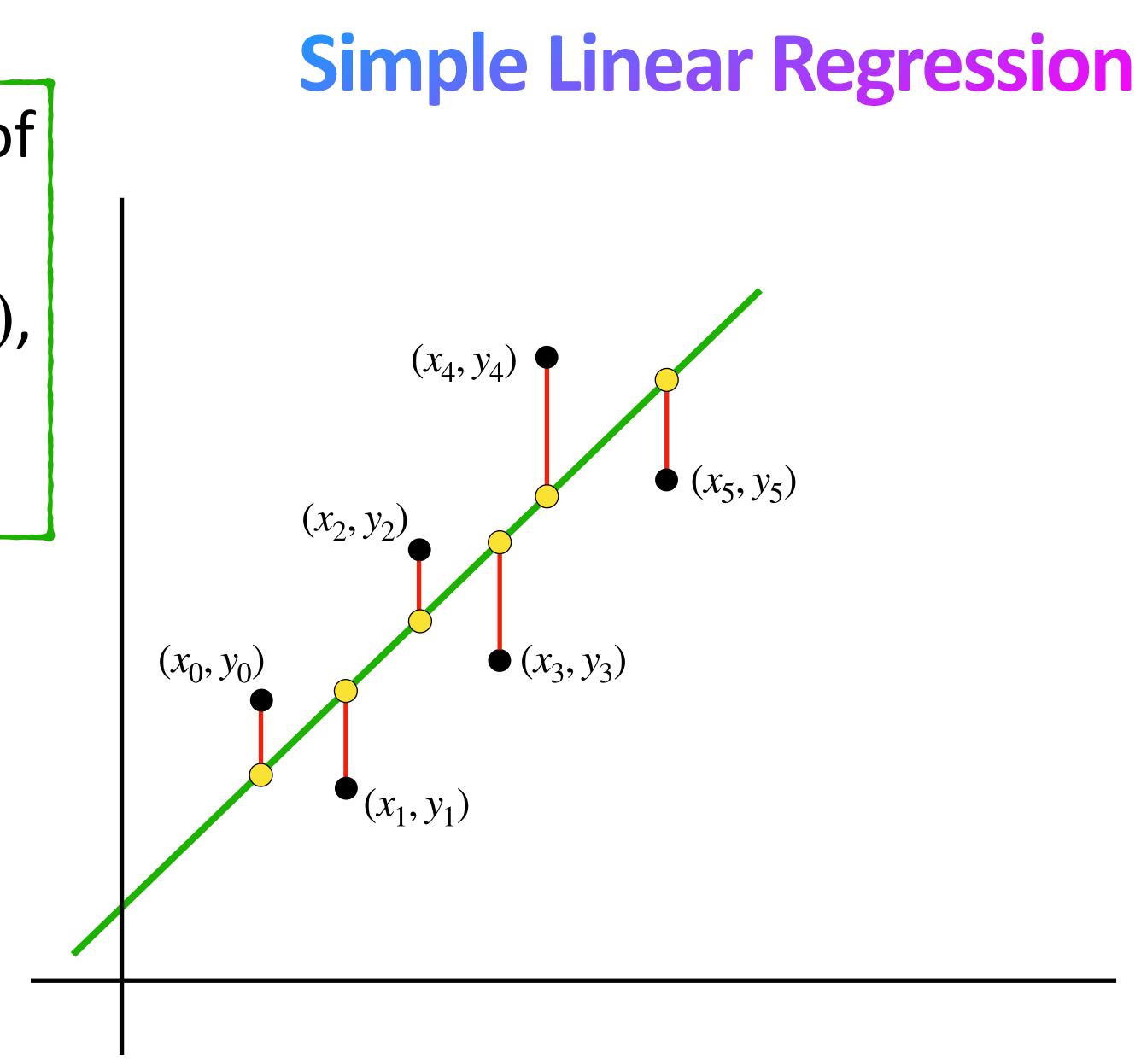


Problem Statement: Given a set of
data points in
$$\mathbb{R}^2$$
,
 $(x_0, y_0), (x_1, y_1), (x_2, y_2) \dots (x_n, y_n)$
find the line that minimizes the
Mean Squared Error (MSE)

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$ Mean Squared Error (MSE)

$$\frac{1}{2n}\sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{2n}\sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)



Data is synthetic and not plotted to scale 6

scale

The Problem Statement:

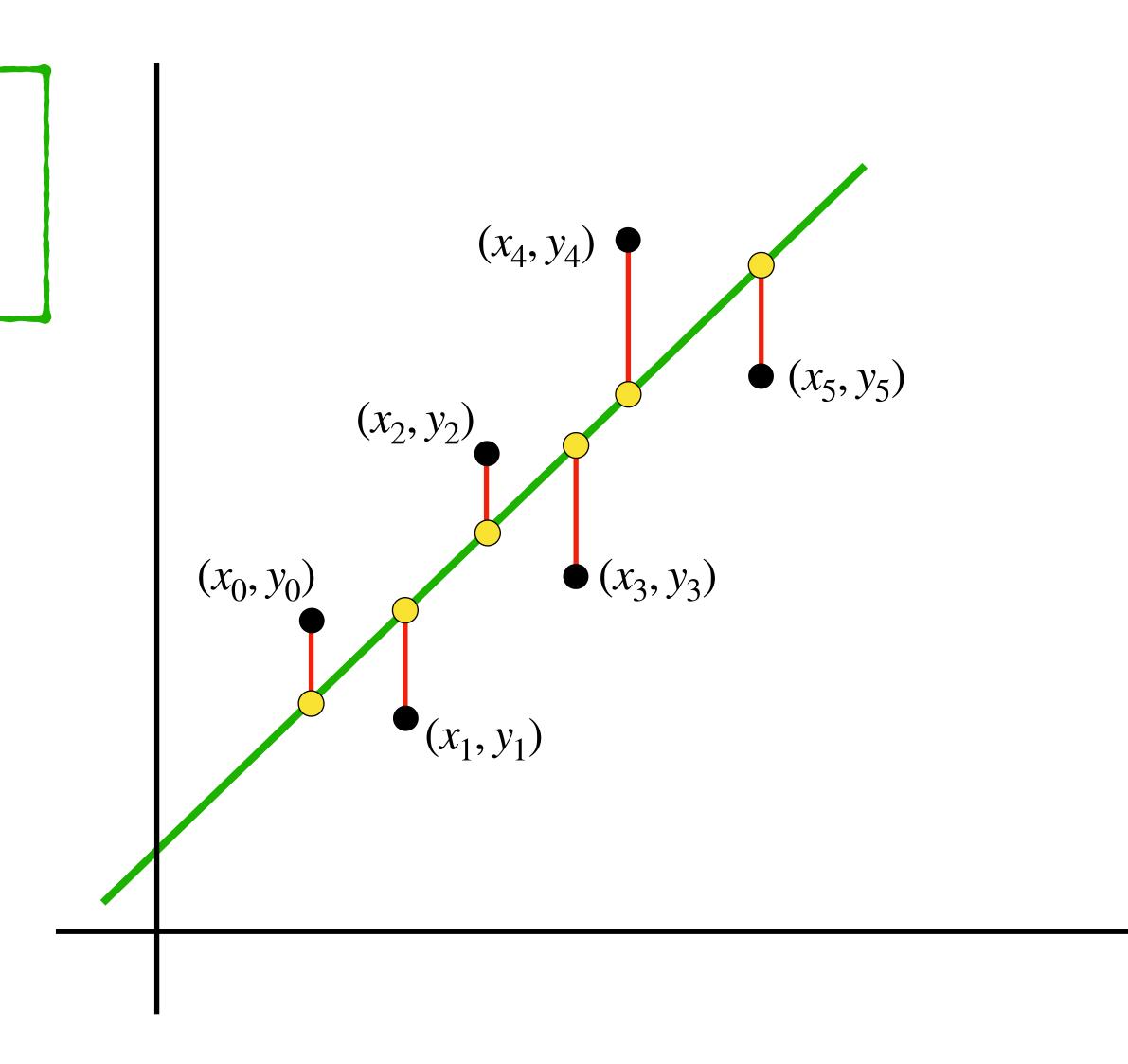
Simple Linear Regression: Find the values of β_0 and β_1 such that the **Mean Squared** Error (MSE) is minimized.

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$ Mean Squared Error (MSE)

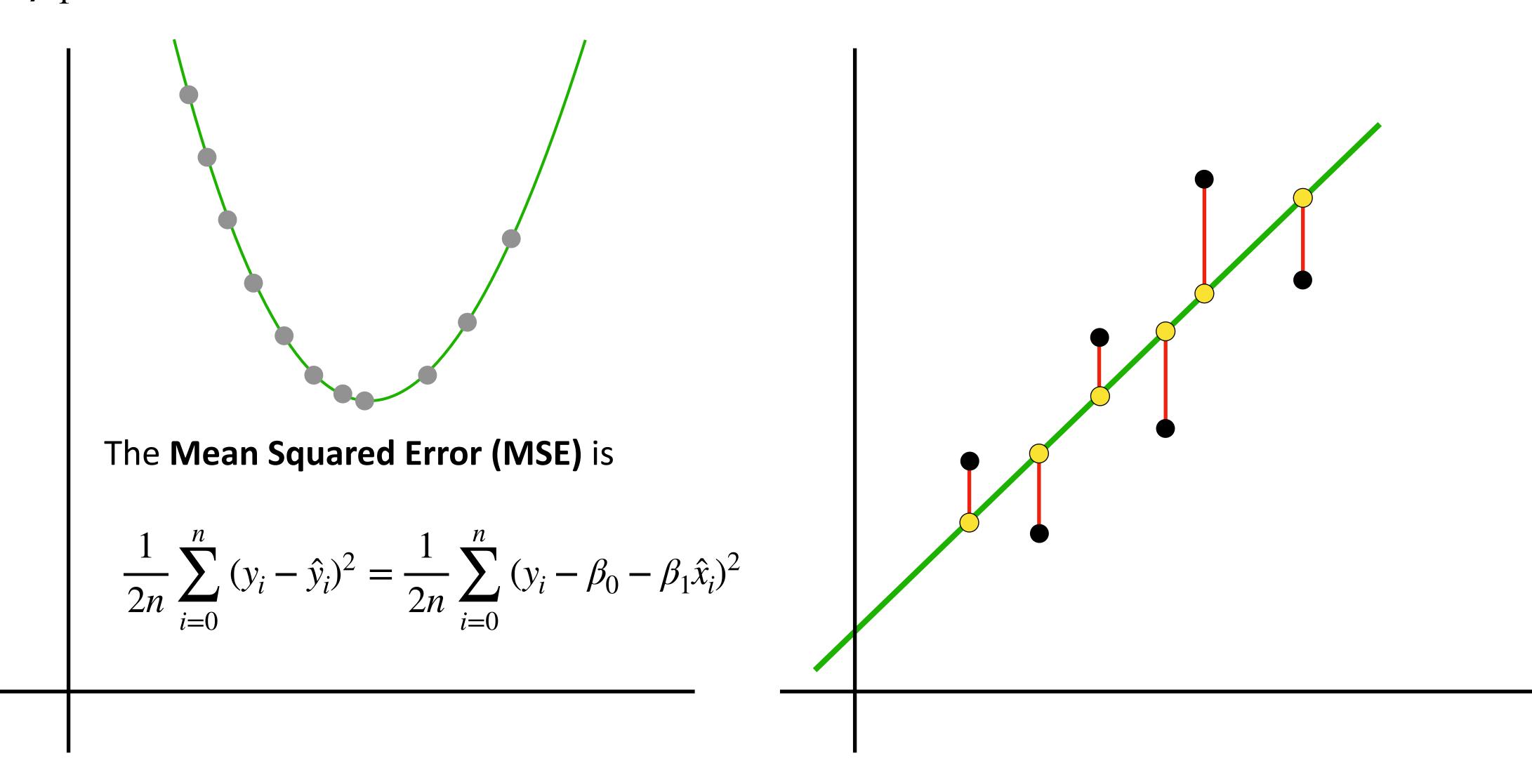
$$\frac{1}{2n}\sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{2n}\sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Simple Linear Regression



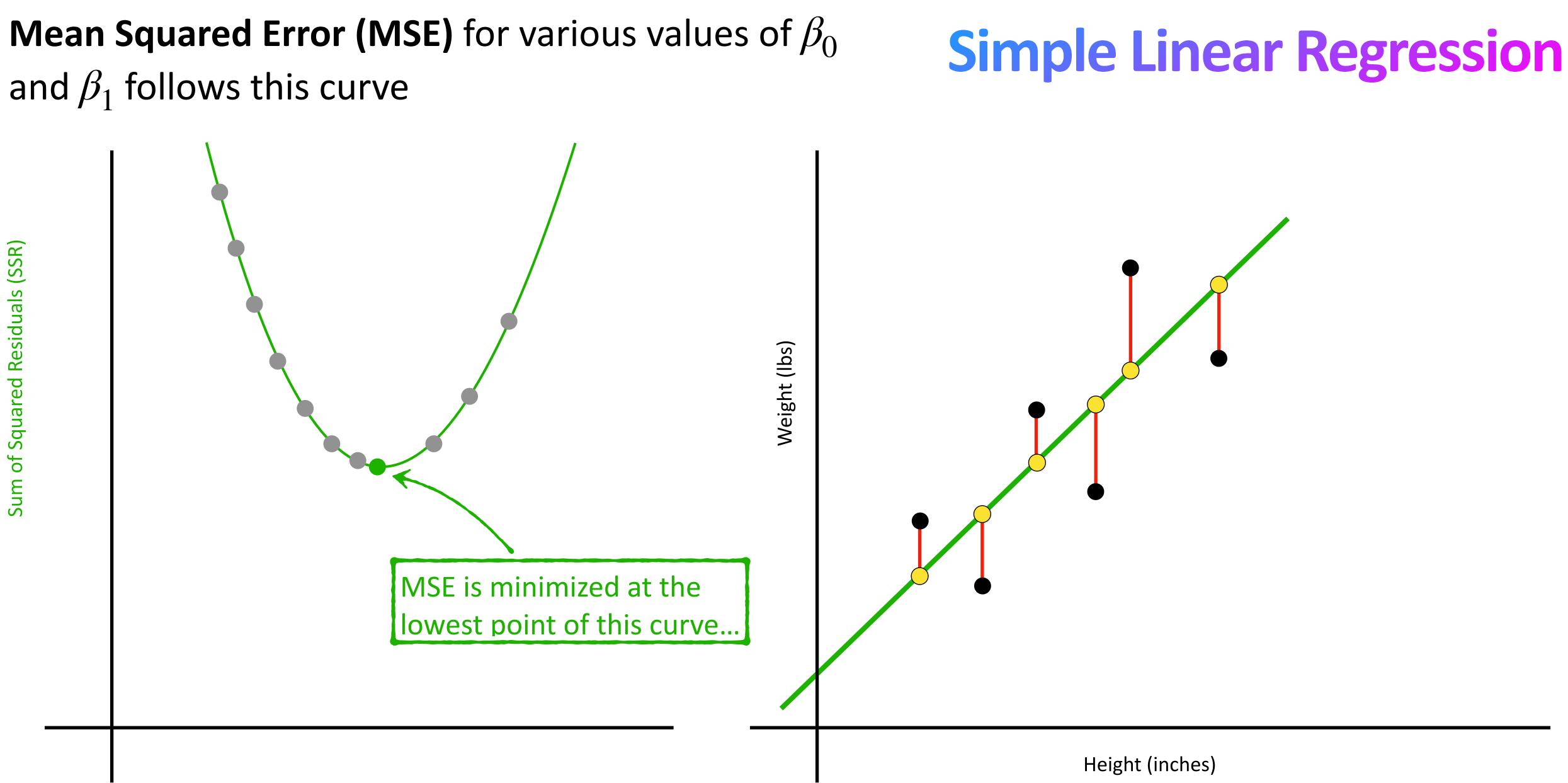
Data is synthetic and not plotted to scale 7



Simple Linear Regression

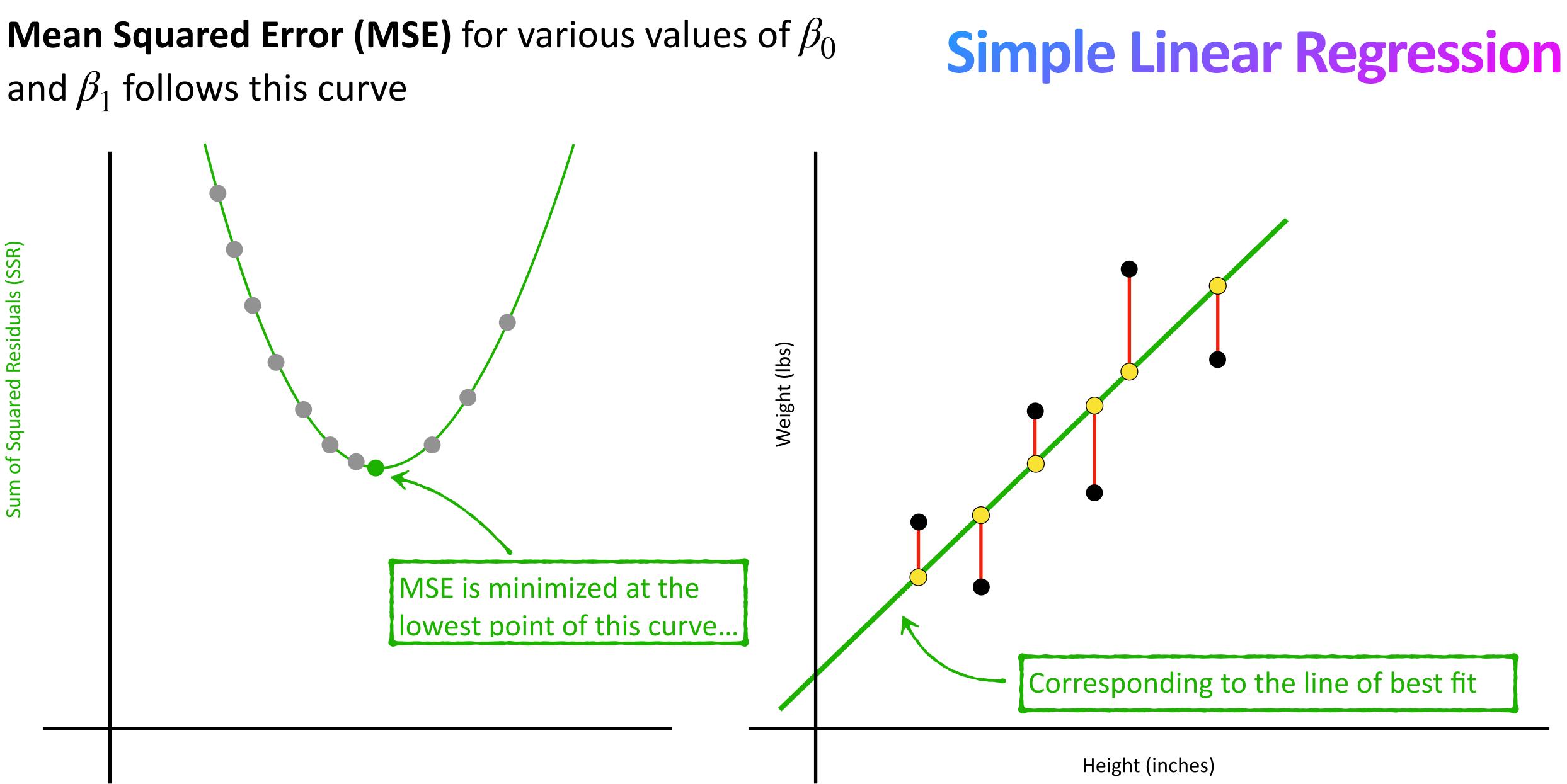
and β_1 follows this curve

Sum of Squared Residuals (SSR)

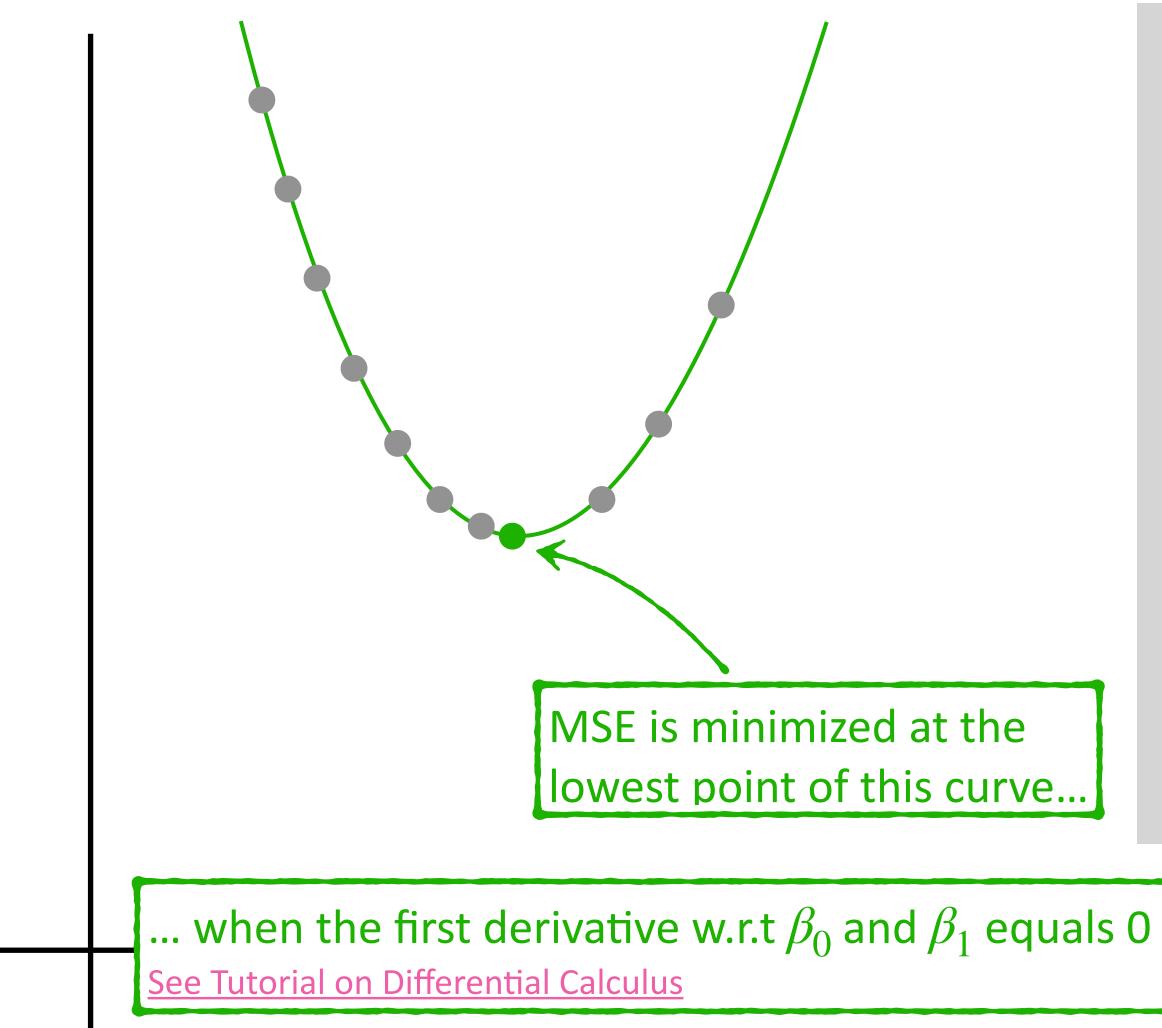


and β_1 follows this curve

Sum of Squared Residuals (SSR)



Mean Squared Error (MSE) for various values of β_0 **Simple Linear Regression** and β_1 follows this curve



Sum of Squared Residuals (SSR)

The Mean Squared Error (MSE) is...

$$\frac{1}{2n}\sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{2n}\sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

The first derivative w.r.t β_0 and β_1 is...

$$\frac{\partial}{\partial\beta_0} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2$$
$$\frac{\partial}{\partial\beta_1} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^n (x_i y_i - \beta_0 x_i - \beta_0 x_i)^2$$

We can find the optimal values for β_0 and β_1 by solving these two equations...

... as we did in the tutorial on Simple Linear Regression

This time we will use **Gradient Descent** to find the optimal values of β_0 and β_1

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Simple Linear Regression

The Mean Squared Error (MSE) is...

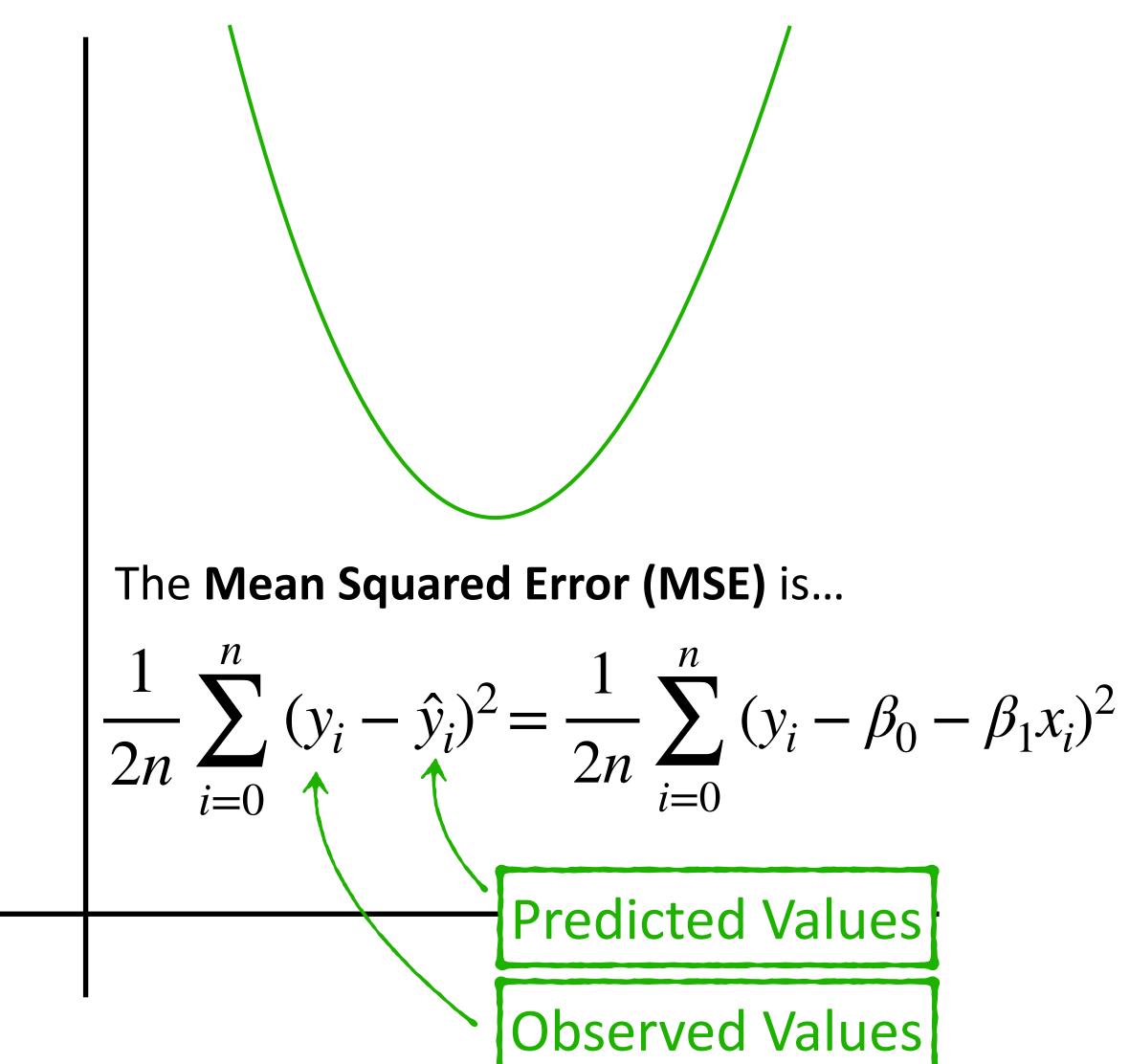
$$\frac{1}{2n}\sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{2n}\sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

The first derivative w.r.t β_0 and β_1 is...

$$\frac{\partial}{\partial\beta_0} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2$$
$$\frac{\partial}{\partial\beta_1} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^n (x_i y_i - \beta_0 x_i - \beta_0 x_i)^2$$

Gradient Descent: Basic Concepts

Copyright (c) 2025, <u>Rahul Singh</u>, licensed under CC BY-NC-SA 4.0 (<u>https://creativecommons.org/licenses/by-nc-sa/4.0/</u>)



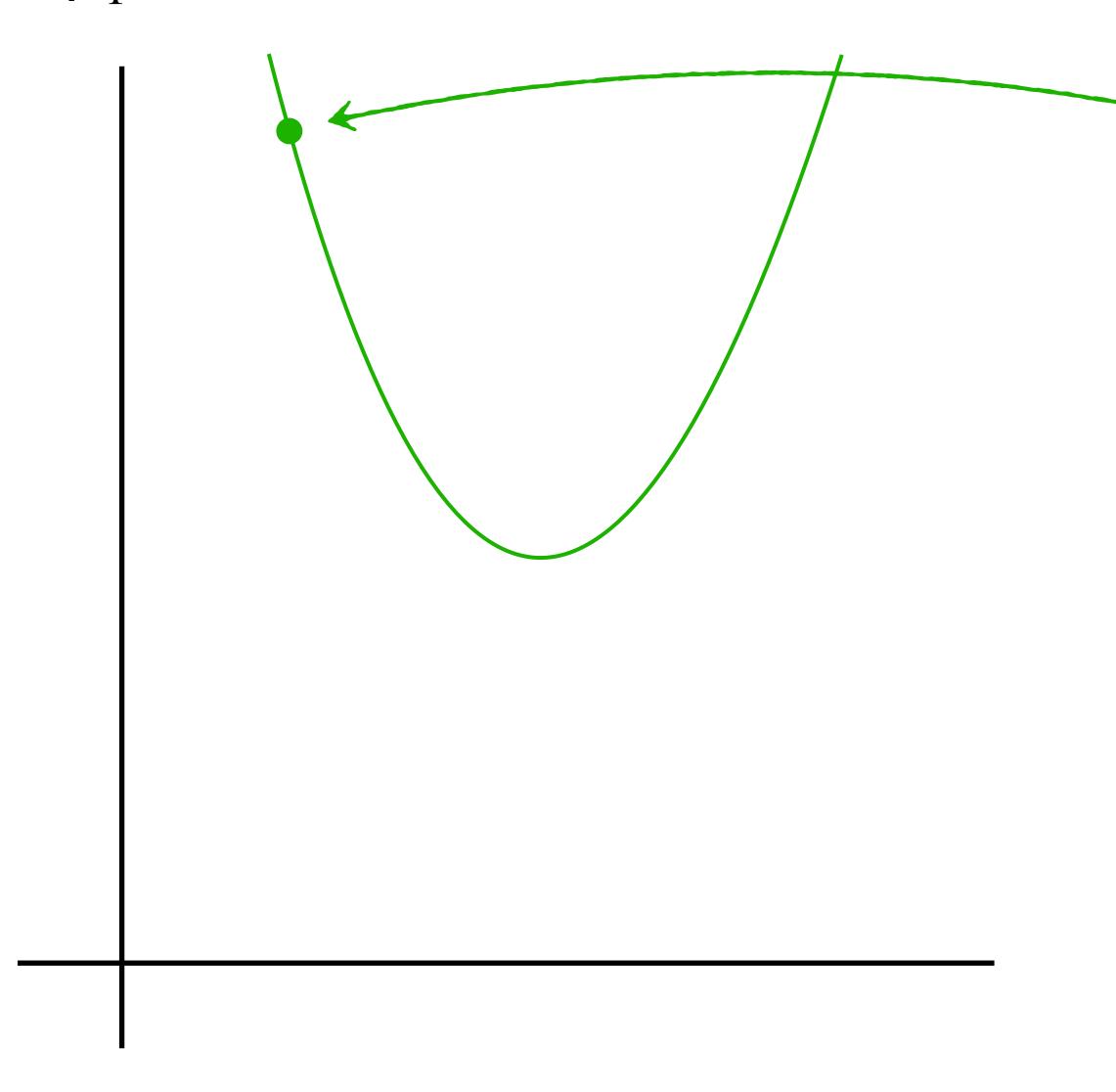
Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Gradient Descent

Every point on this curve is the MSE for different values of β_0 and β_1

For any given point on this curve, we can calculate the slope...

... the slope is the first derivative w.r.t β_0 and β_1



Mean Squared Error (MSE)

Gradient Descent

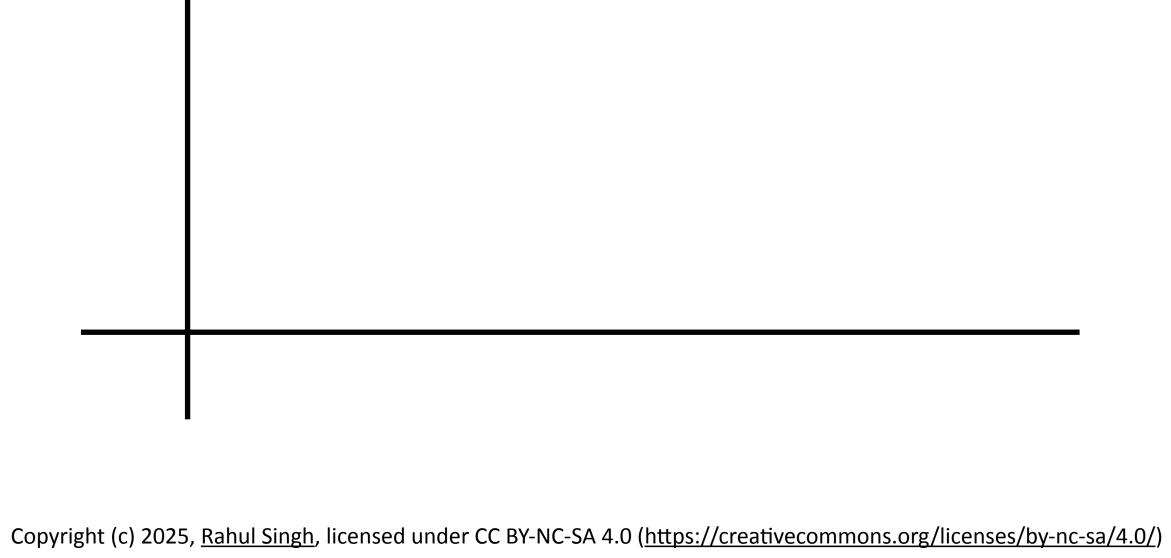
Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 **and** β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size



Gradient Descent

Gradient Descent: Basic Concept

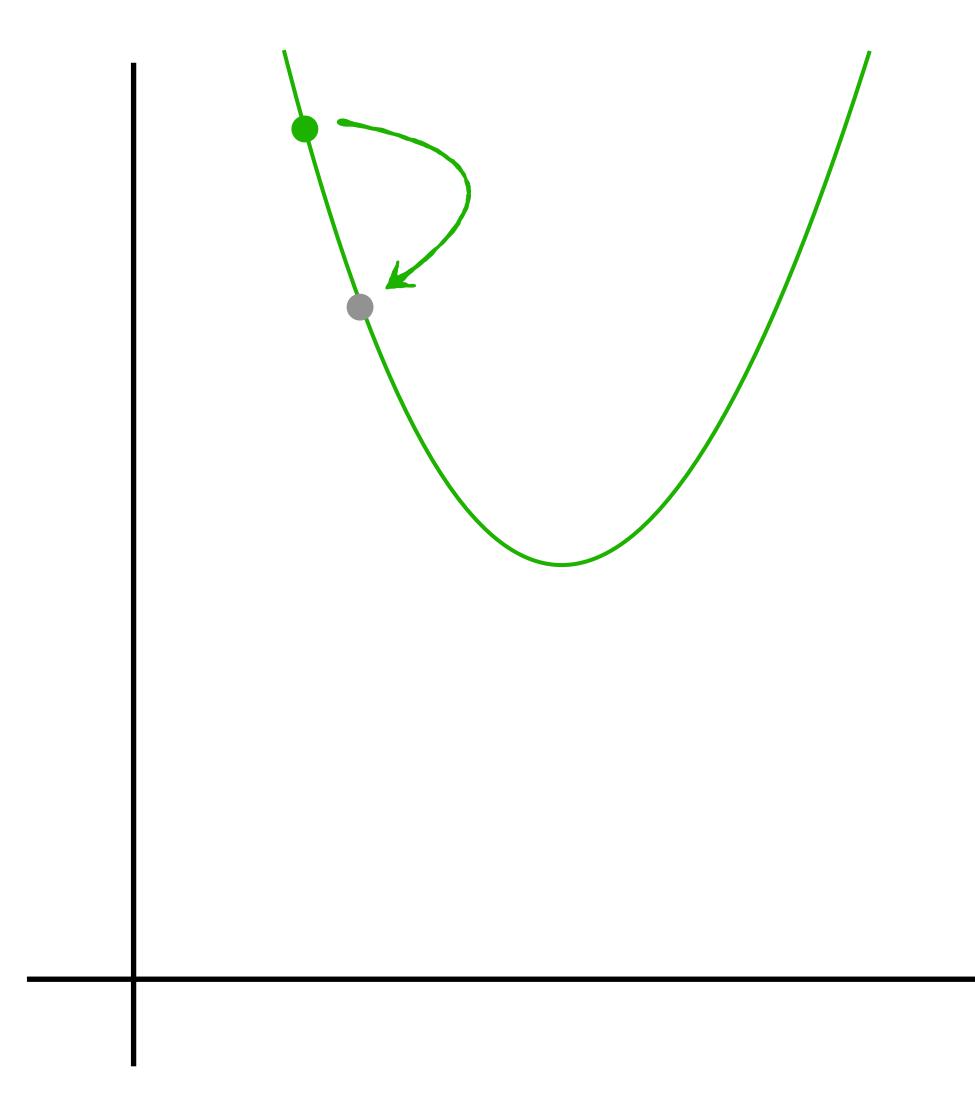
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Step 5: Go to step 2 and repeat



Gradient Descent

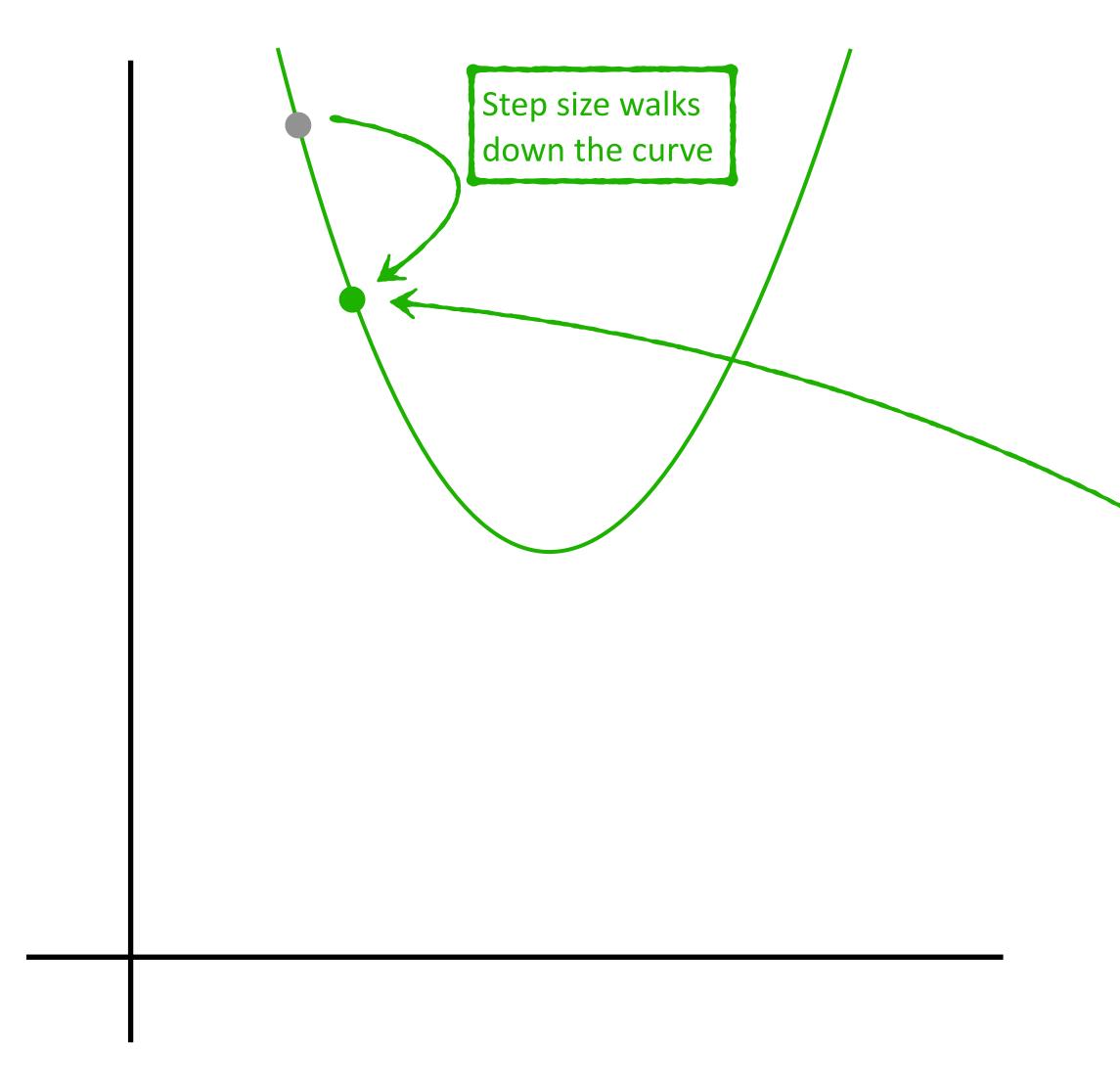
Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size



Gradient Descent

Gradient Descent: Basic Concept

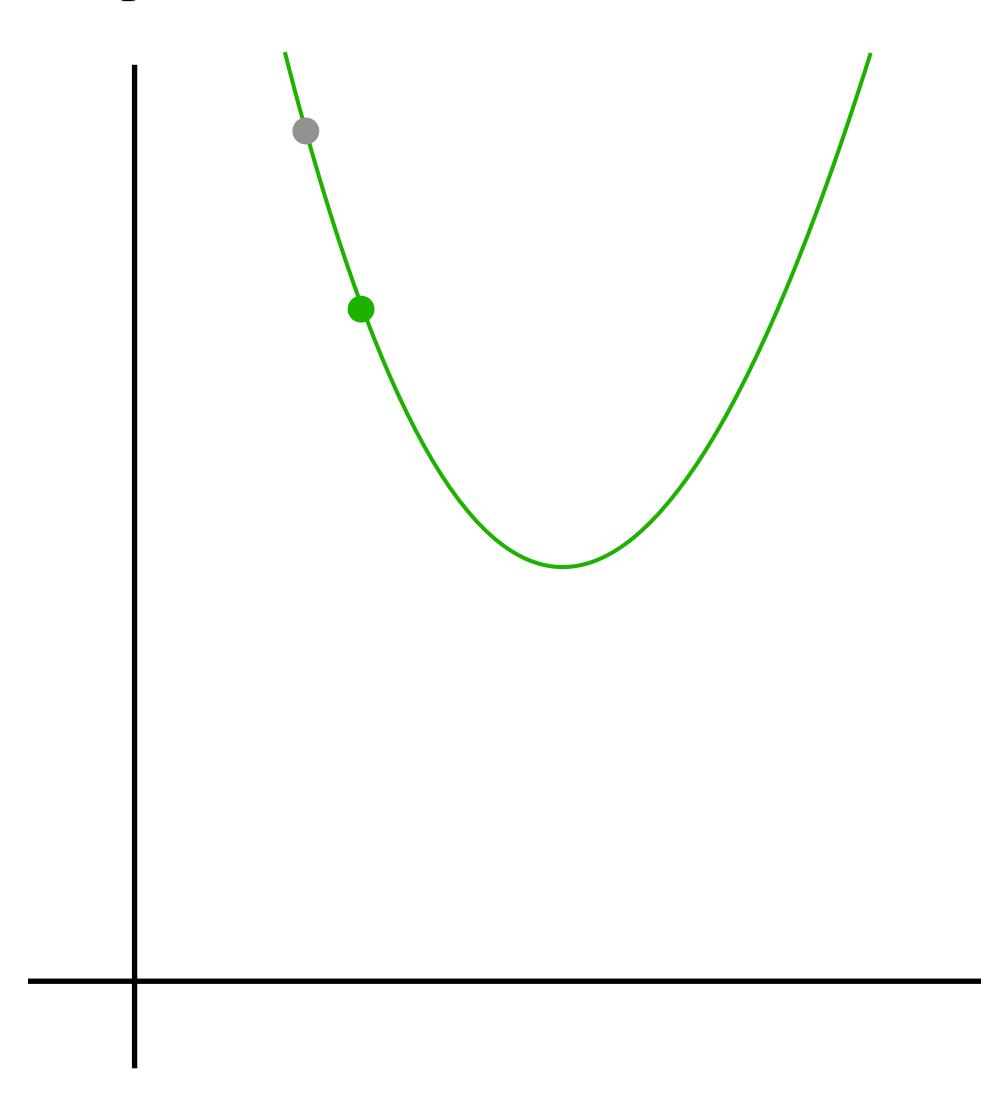
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 **and** β_1 **by** subtracting the step size

Step 5: Go to step 2 and repeat



Gradient Descent

Gradient Descent: Basic Concept

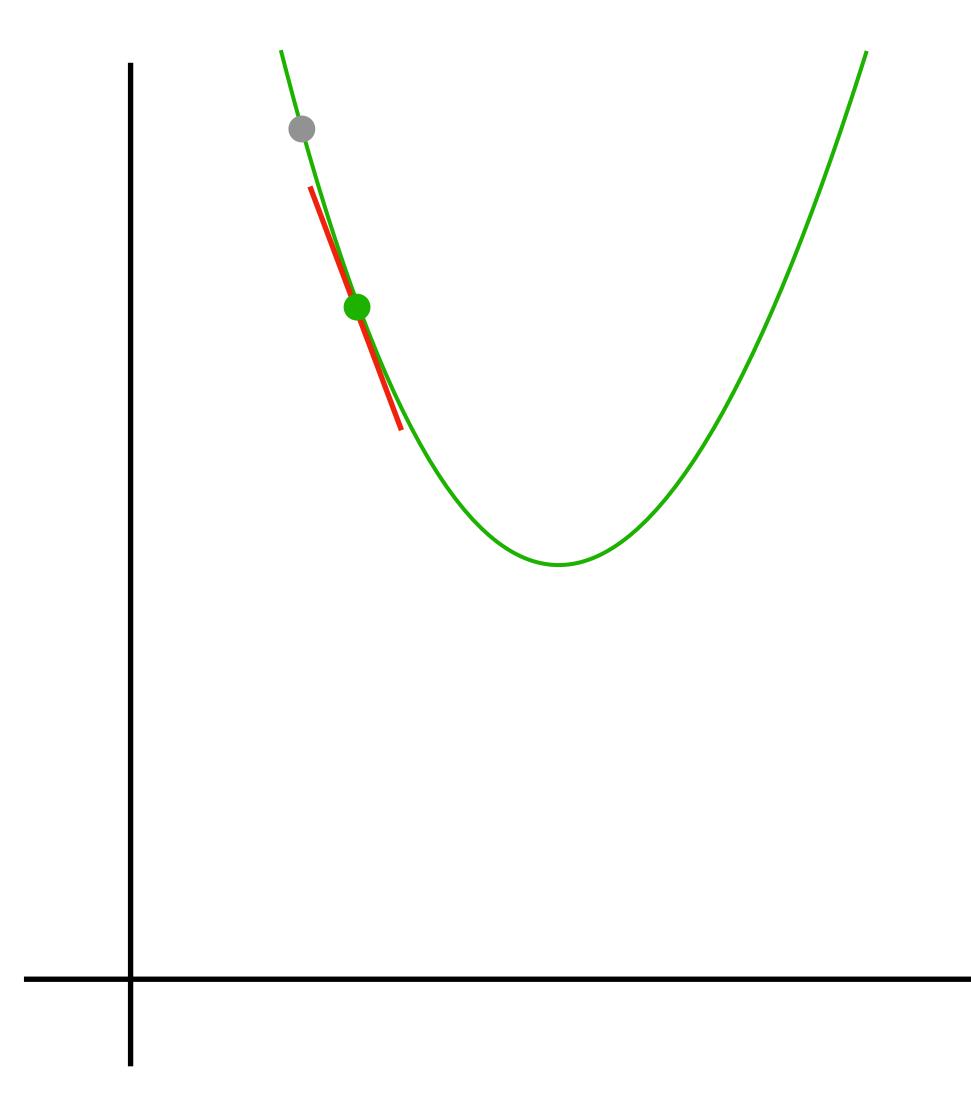
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Step 5: Go to step 2 and repeat



Gradient Descent

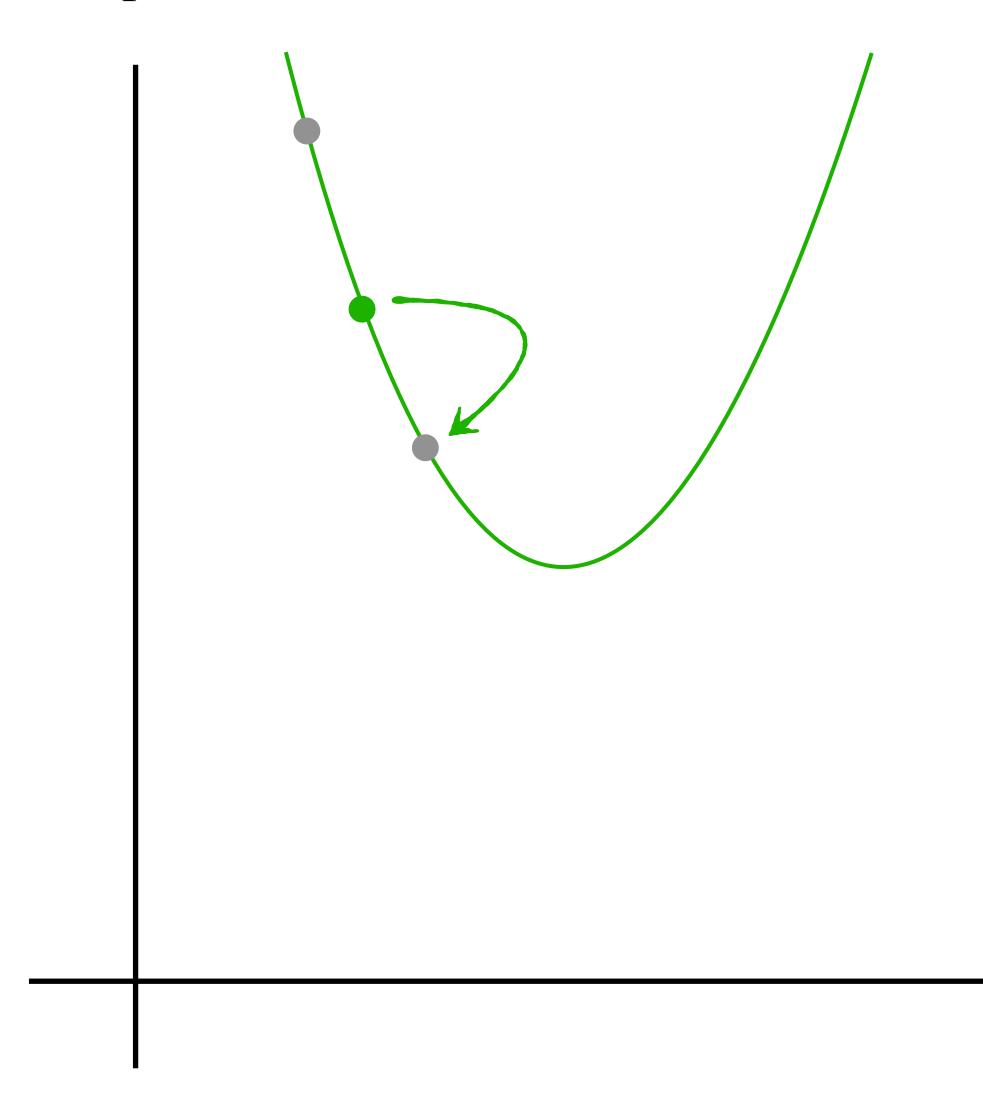
Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size



Gradient Descent

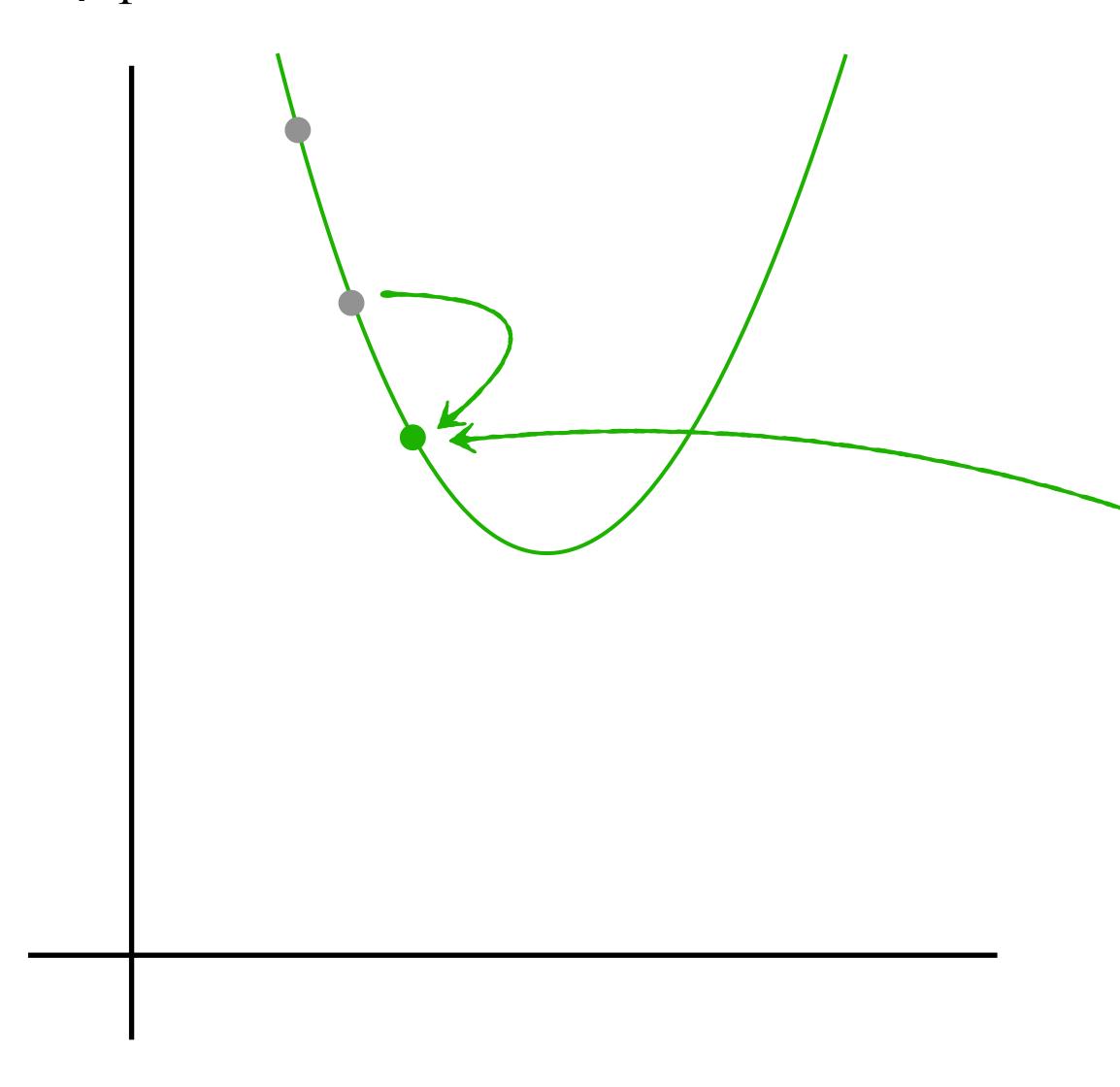
Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size



Gradient Descent

Gradient Descent: Basic Concept

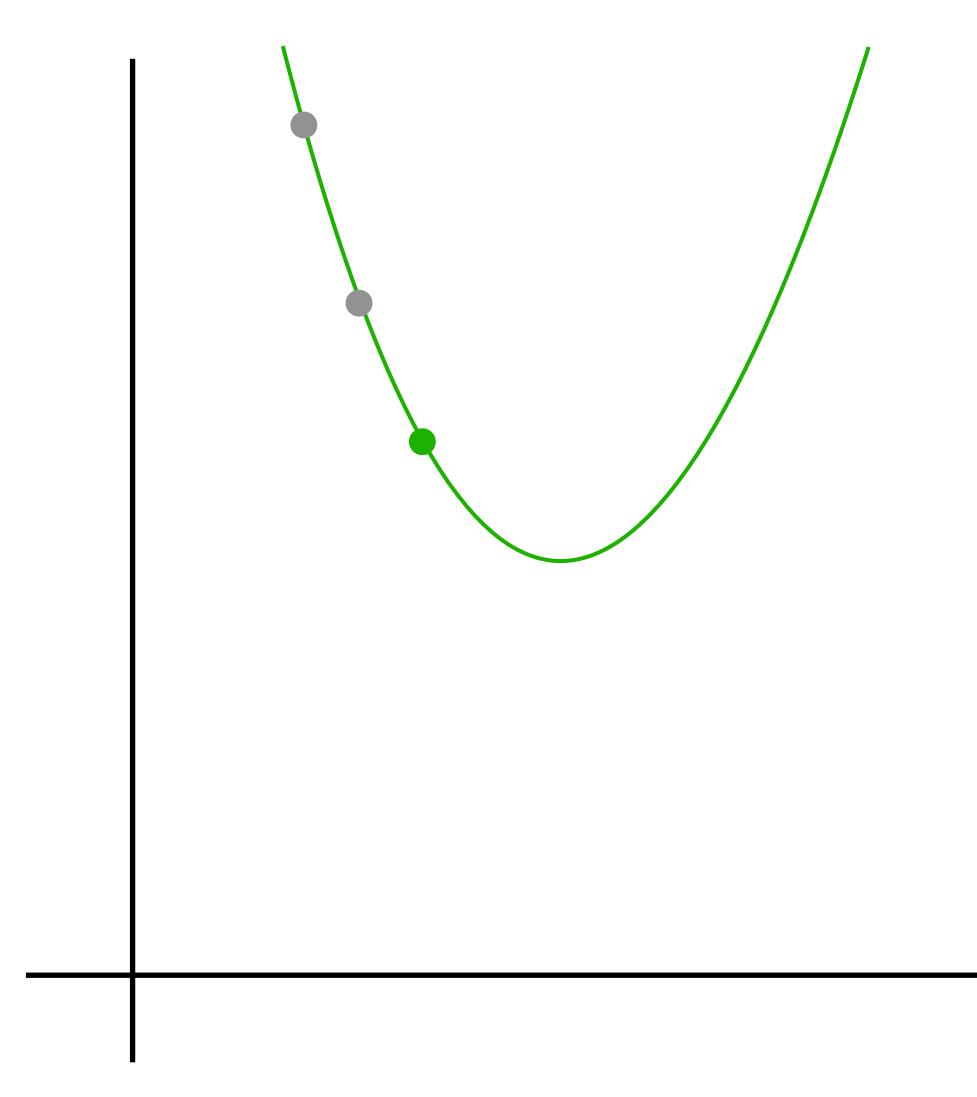
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 **and** β_1 **by** subtracting the step size

Step 5: Go to step 2 and repeat



Gradient Descent

Gradient Descent: Basic Concept

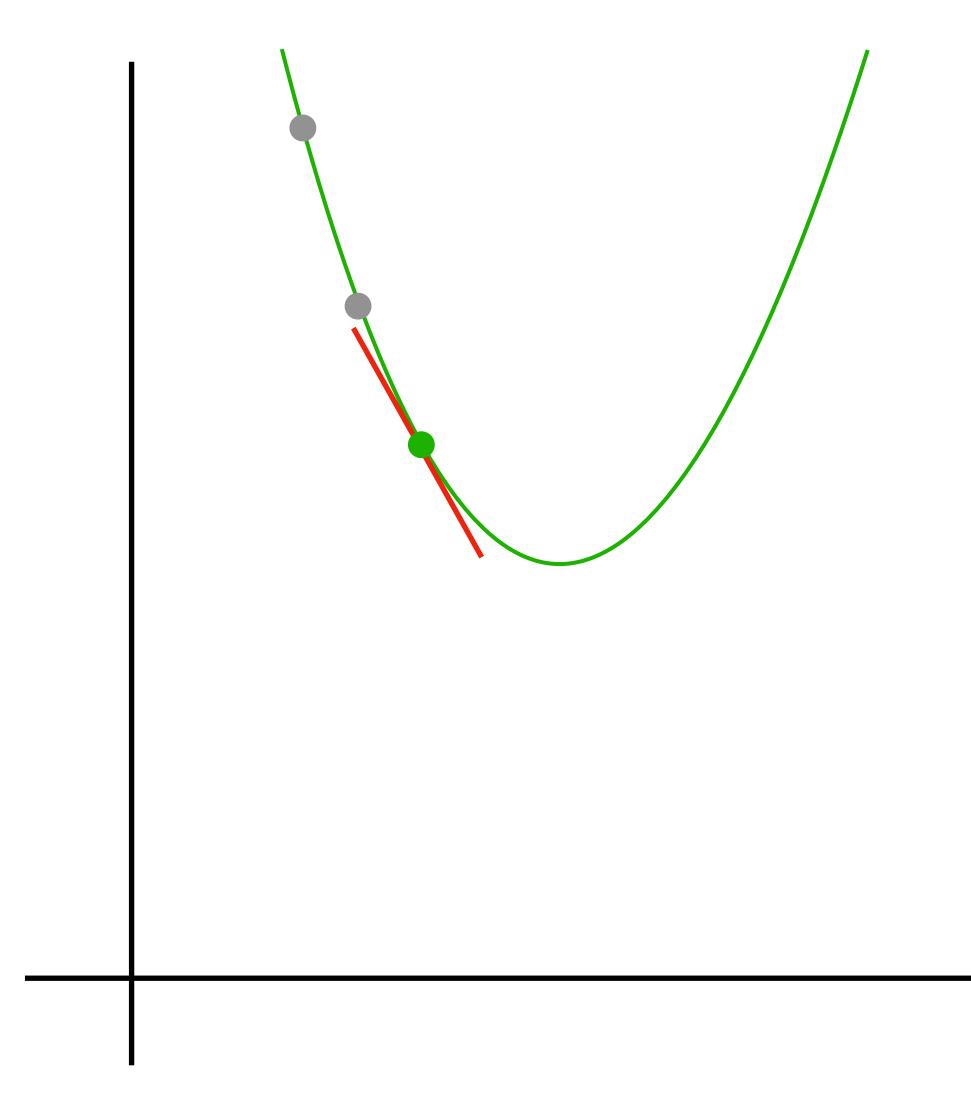
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Step 5: Go to step 2 and repeat



Gradient Descent

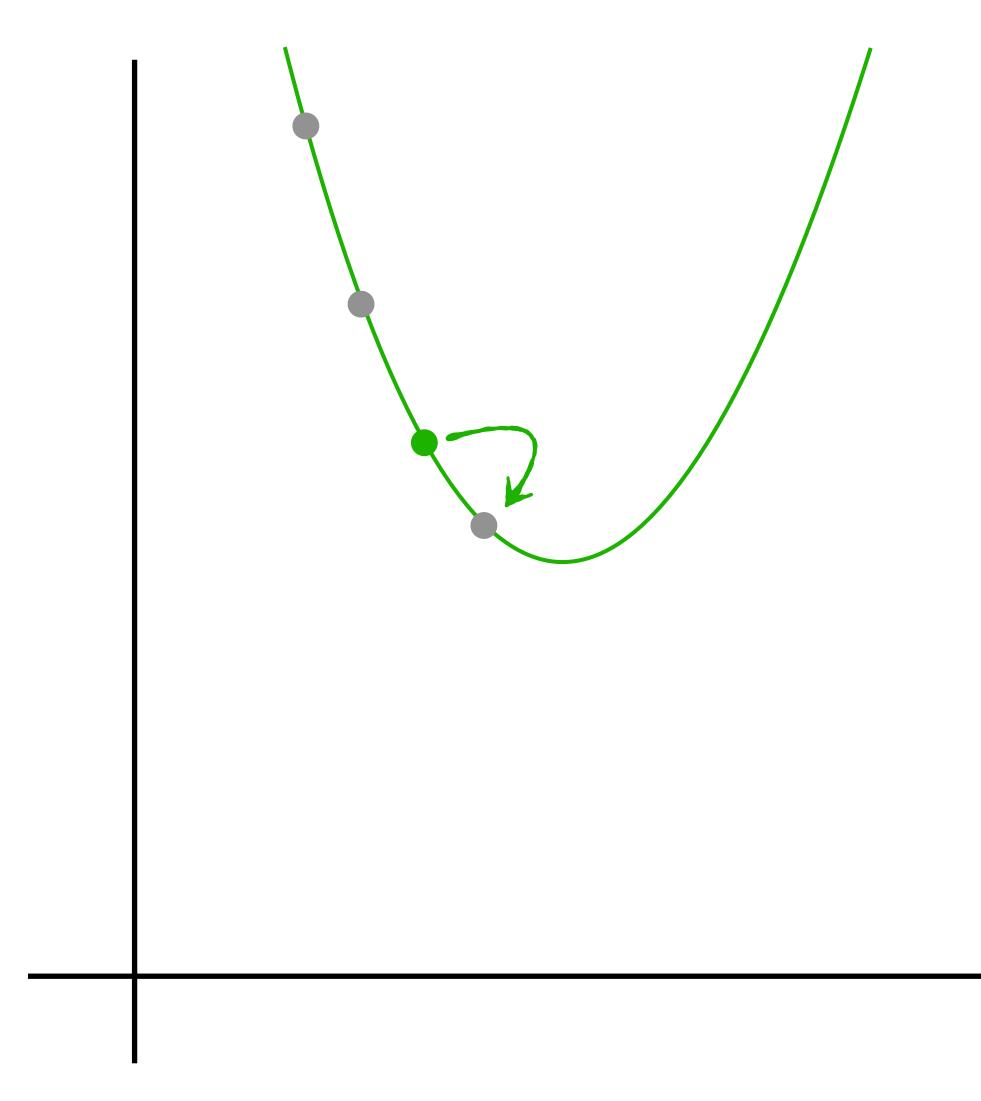
Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size



Gradient Descent

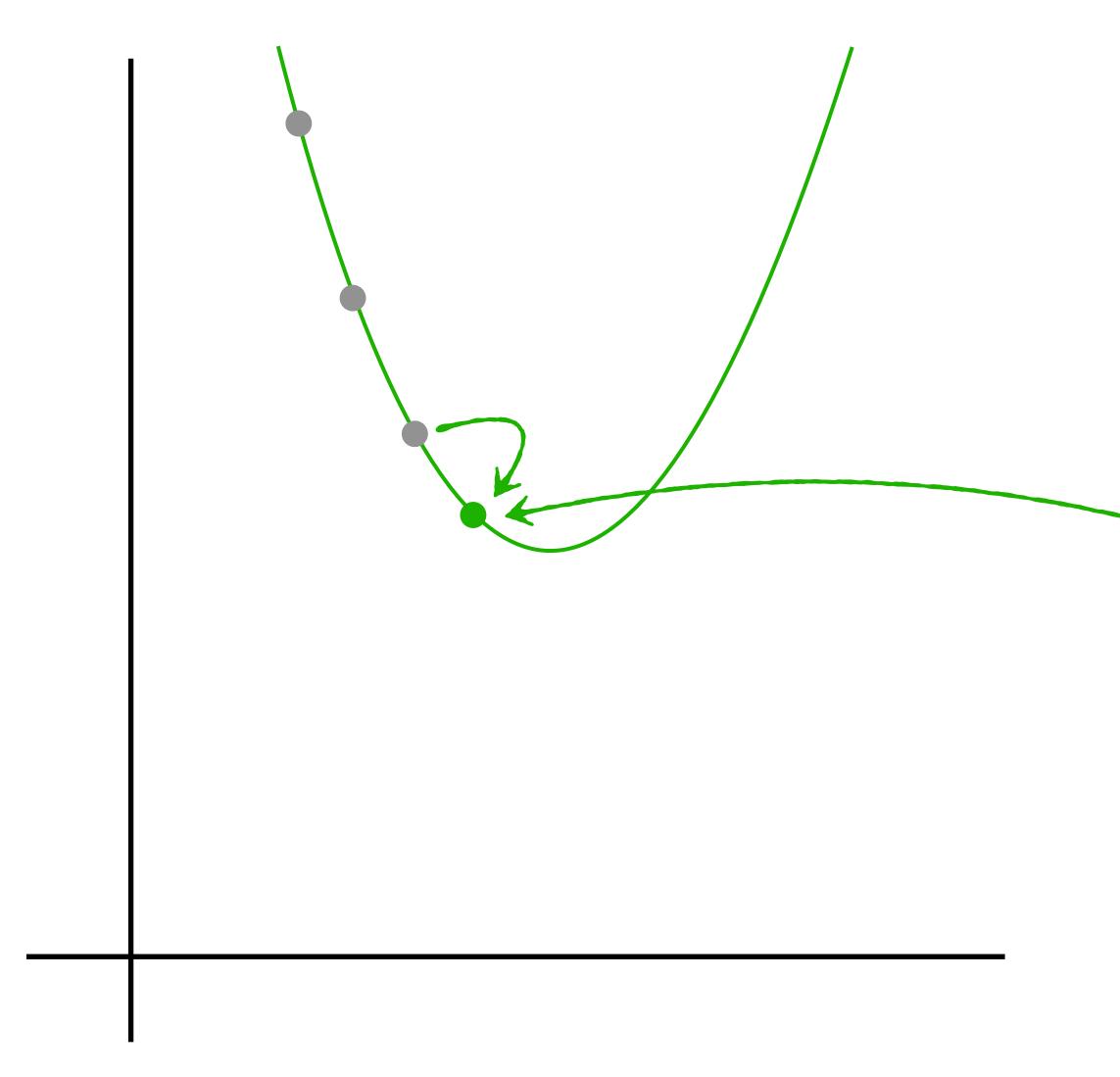
Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size



Gradient Descent

Gradient Descent: Basic Concept

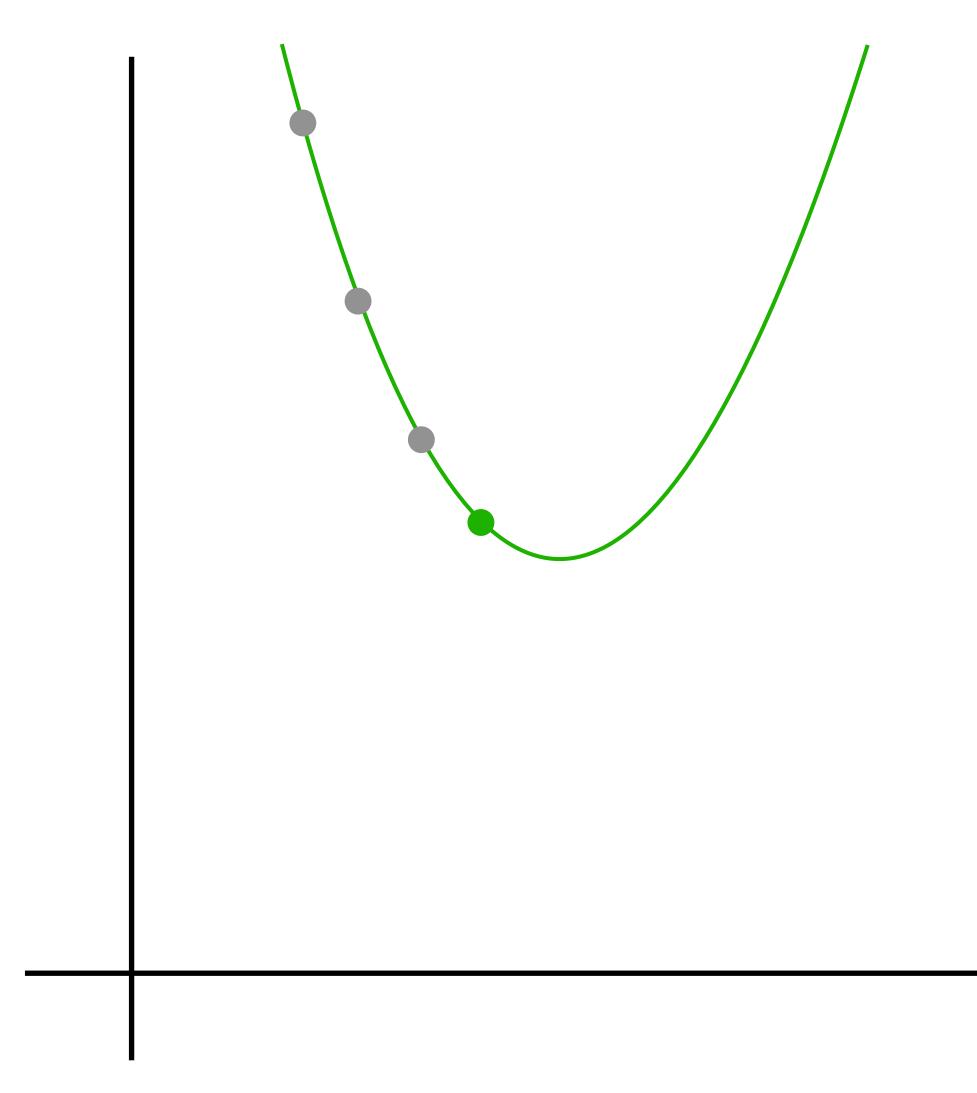
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 **and** β_1 **by** subtracting the step size

Step 5: Go to step 2 and repeat



Gradient Descent

Gradient Descent: Basic Concept

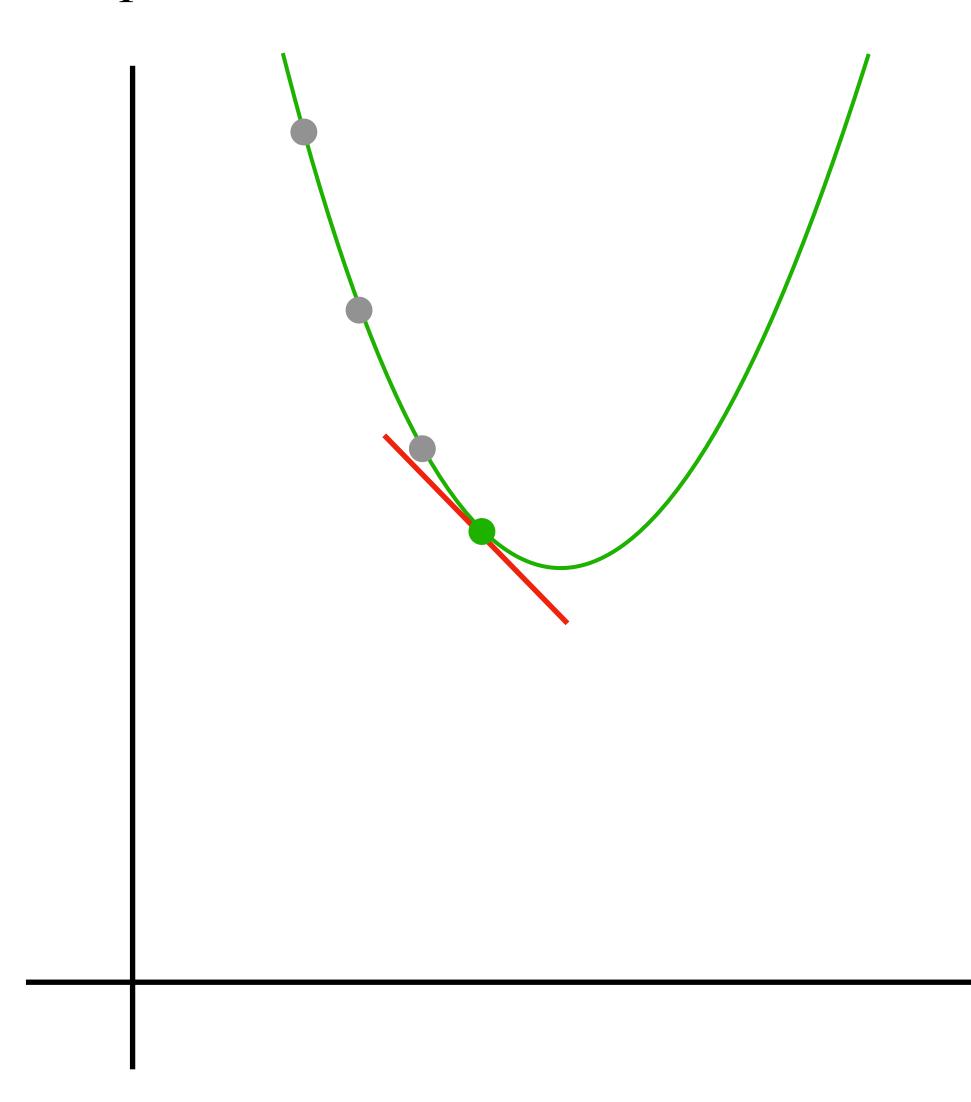
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Step 5: Go to step 2 and repeat



Gradient Descent

Gradient Descent: Basic Concept

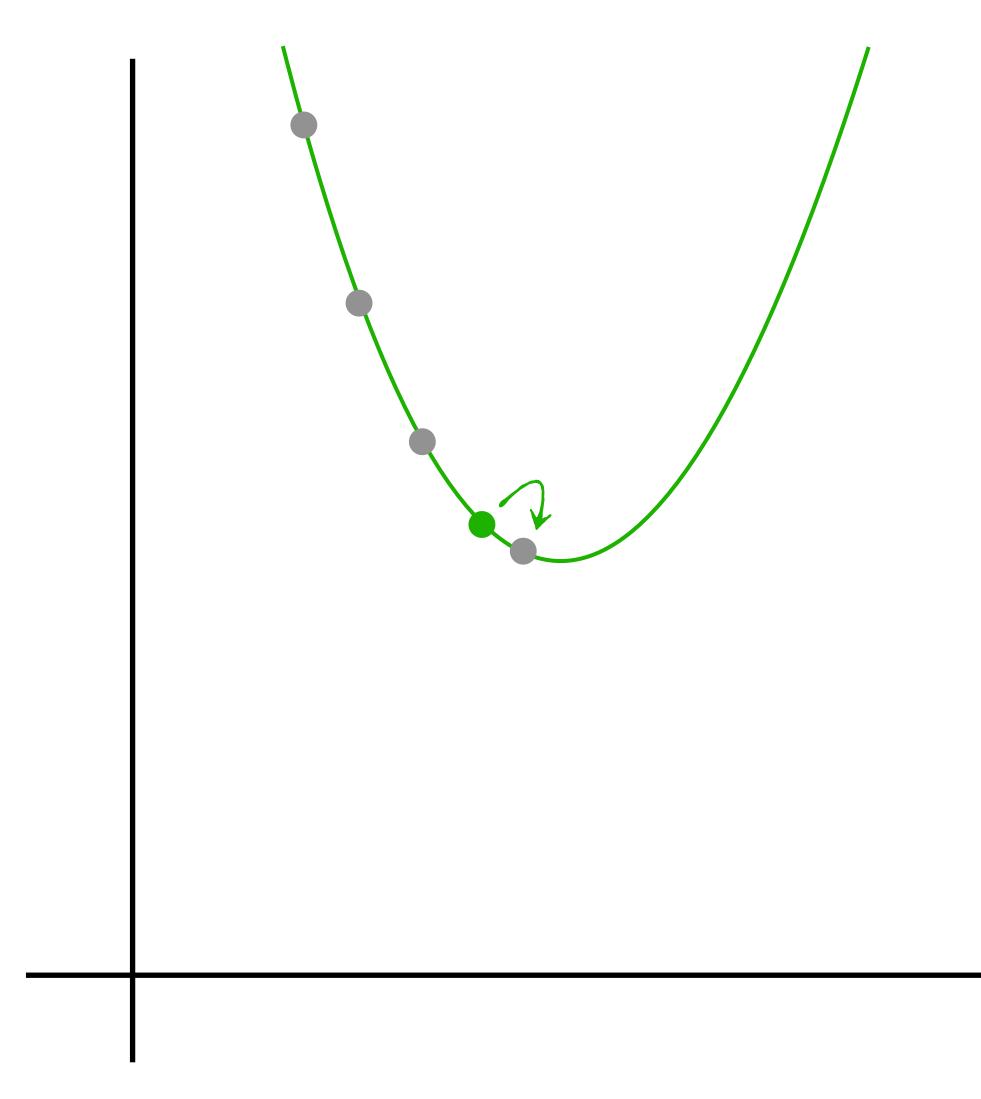
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Step 5: Go to step 2 and repeat



Gradient Descent

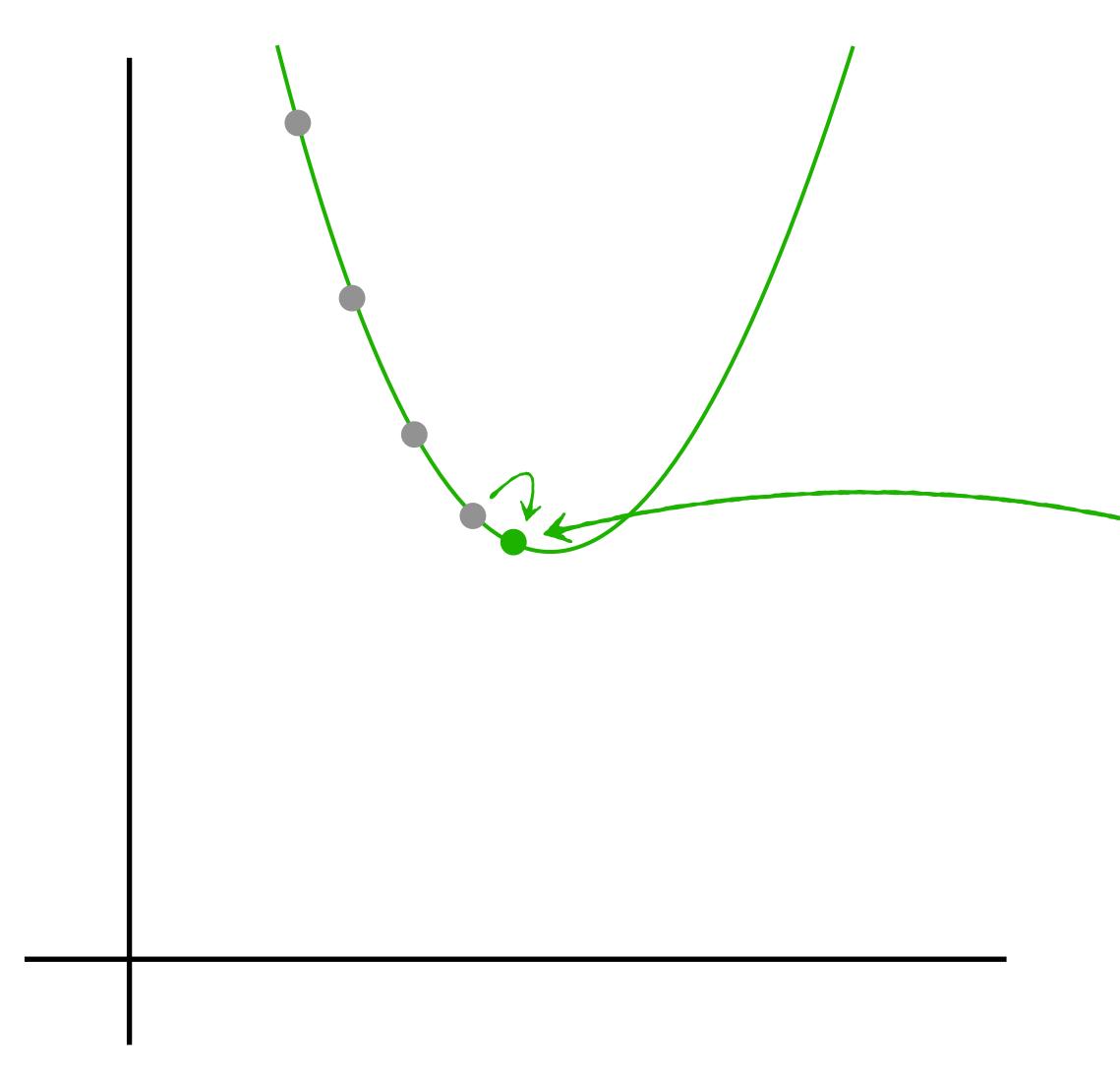
Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size



Gradient Descent

Gradient Descent: Basic Concept

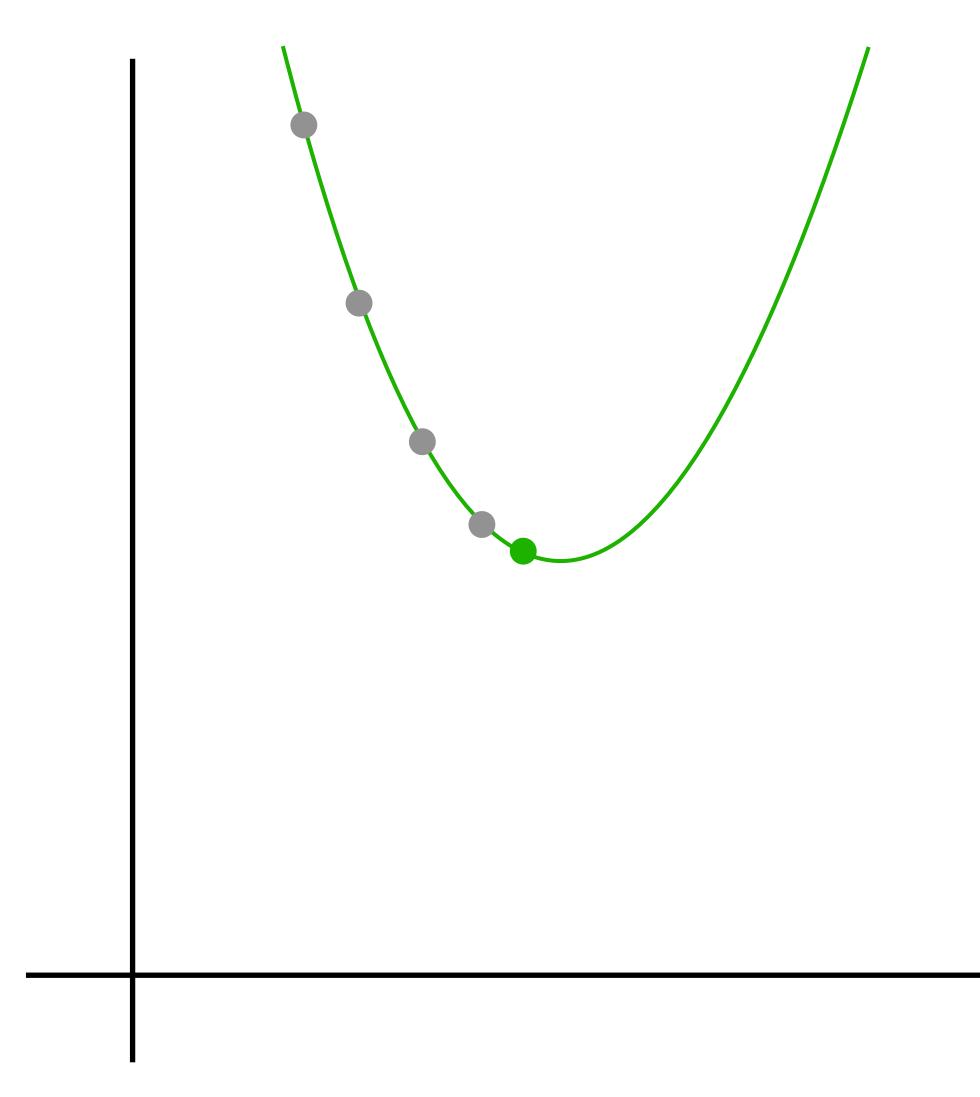
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 **and** β_1 **by** subtracting the step size

Step 5: Go to step 2 and repeat



Gradient Descent

Gradient Descent: Basic Concept

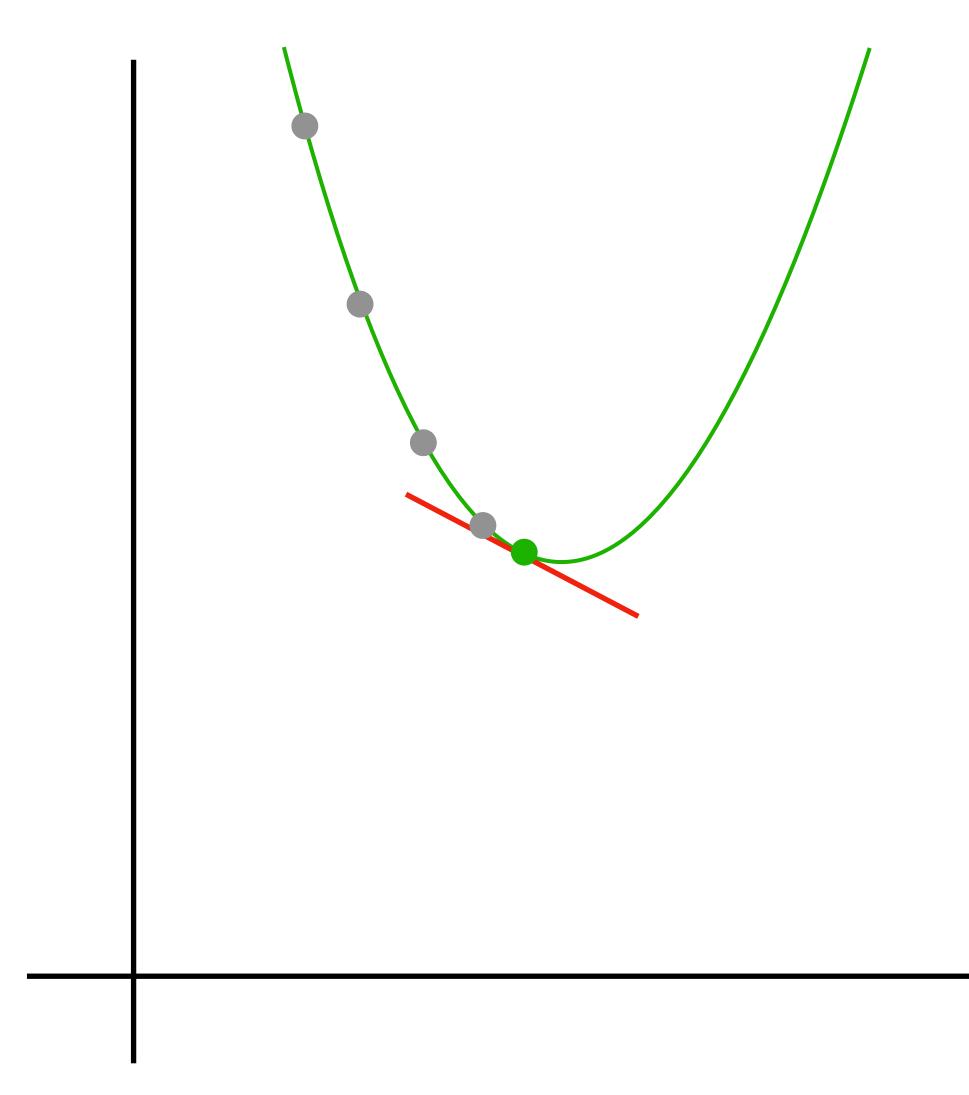
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Step 5: Go to step 2 and repeat



Gradient Descent

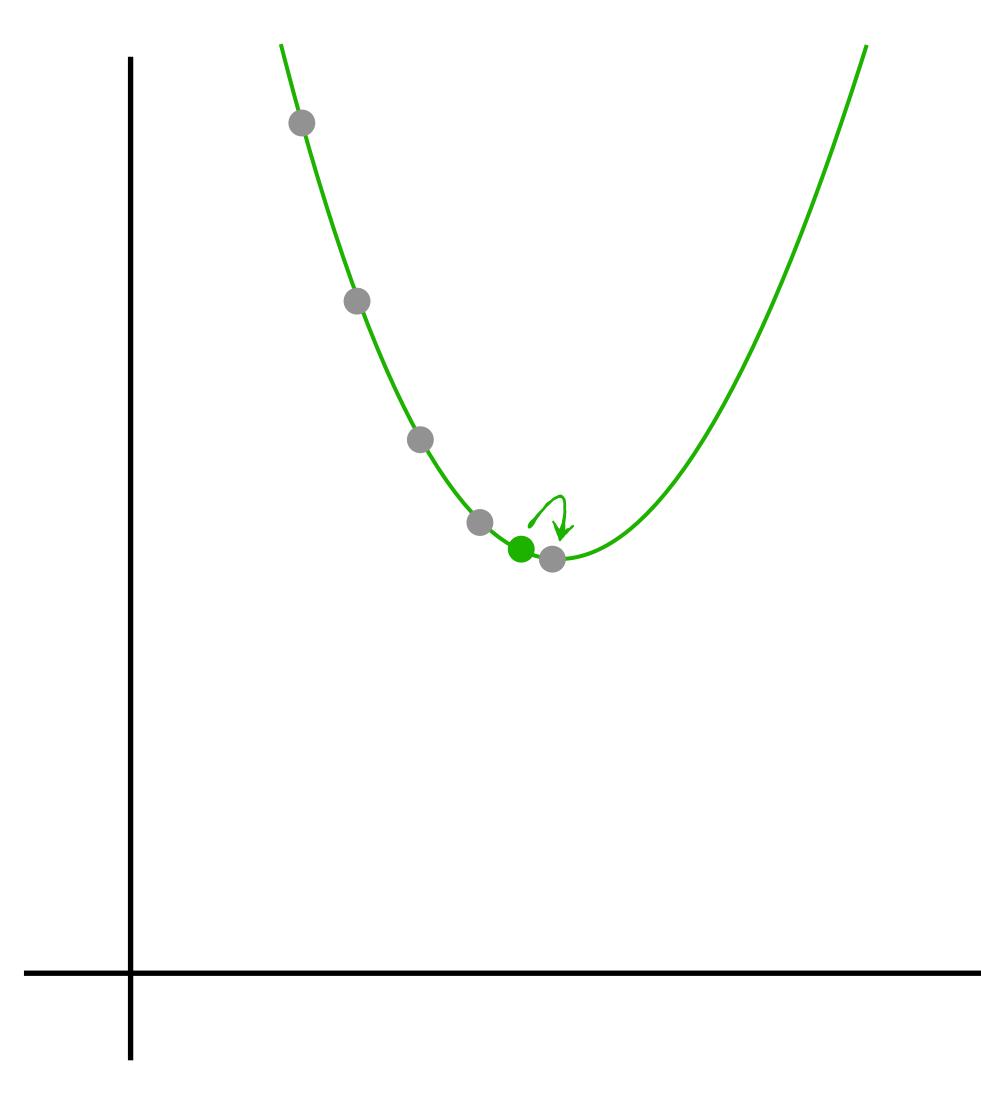
Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size



Gradient Descent

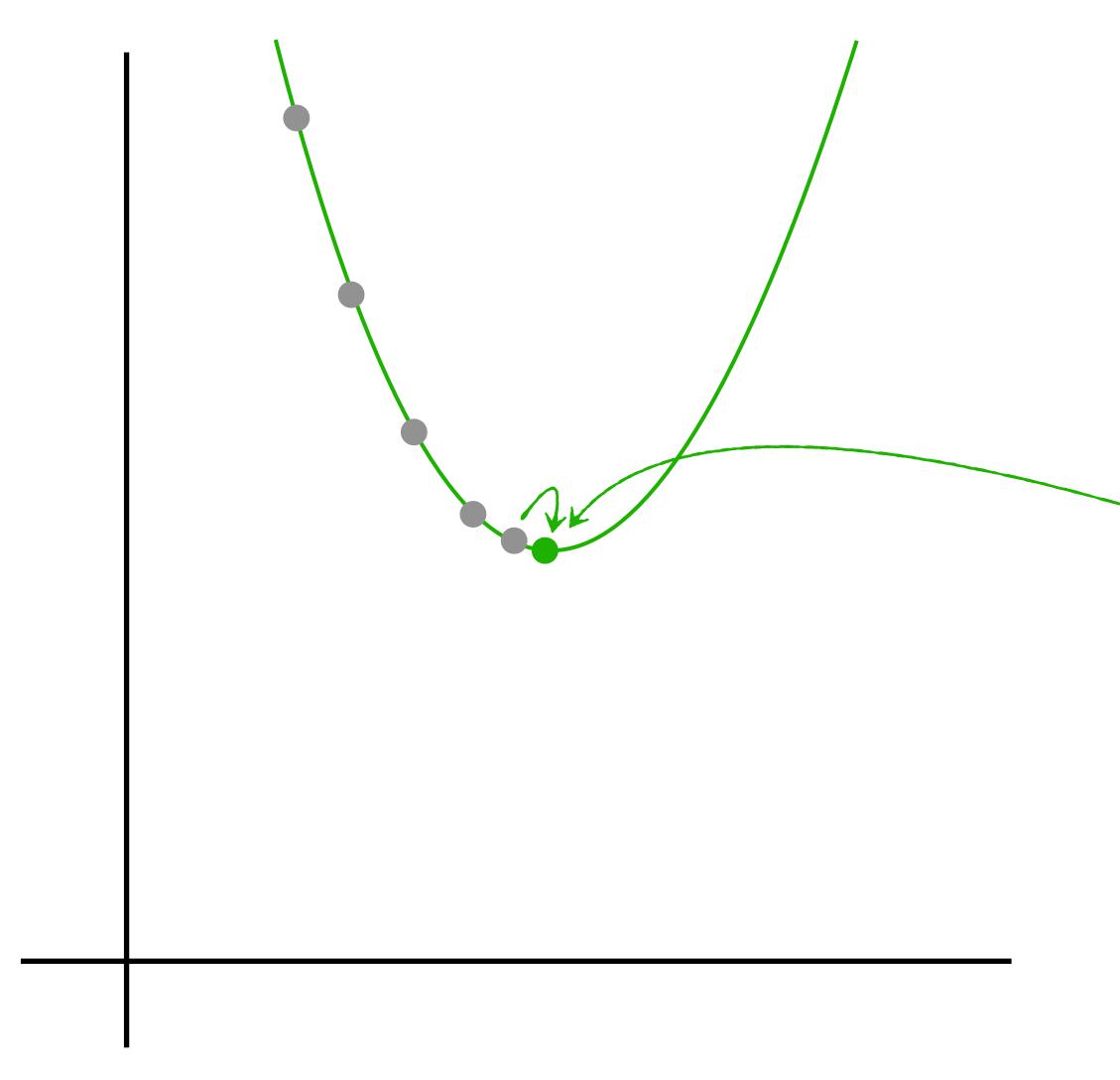
Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size



Gradient Descent

Gradient Descent: Basic Concept

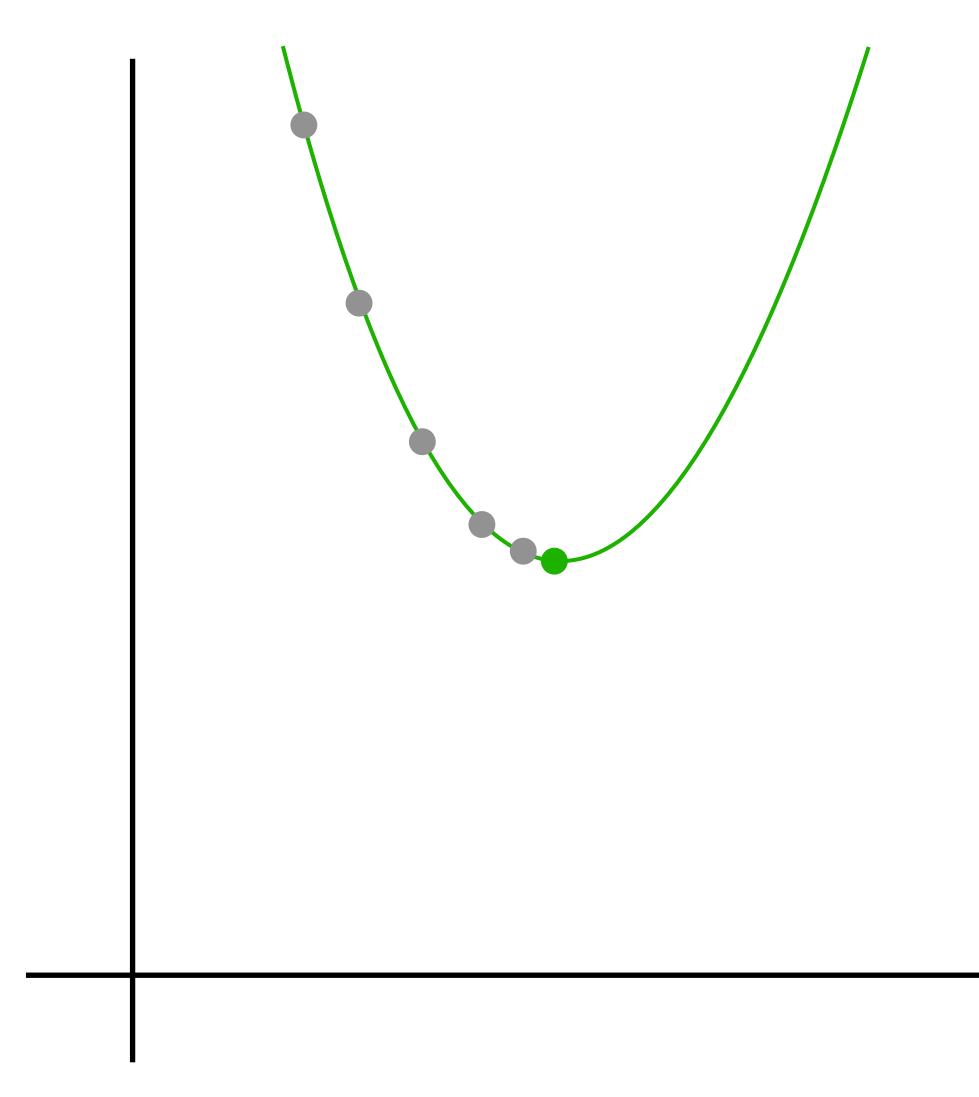
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 **and** β_1 **by** subtracting the step size

Step 5: Go to step 2 and repeat



Gradient Descent

Gradient Descent: Basic Concept

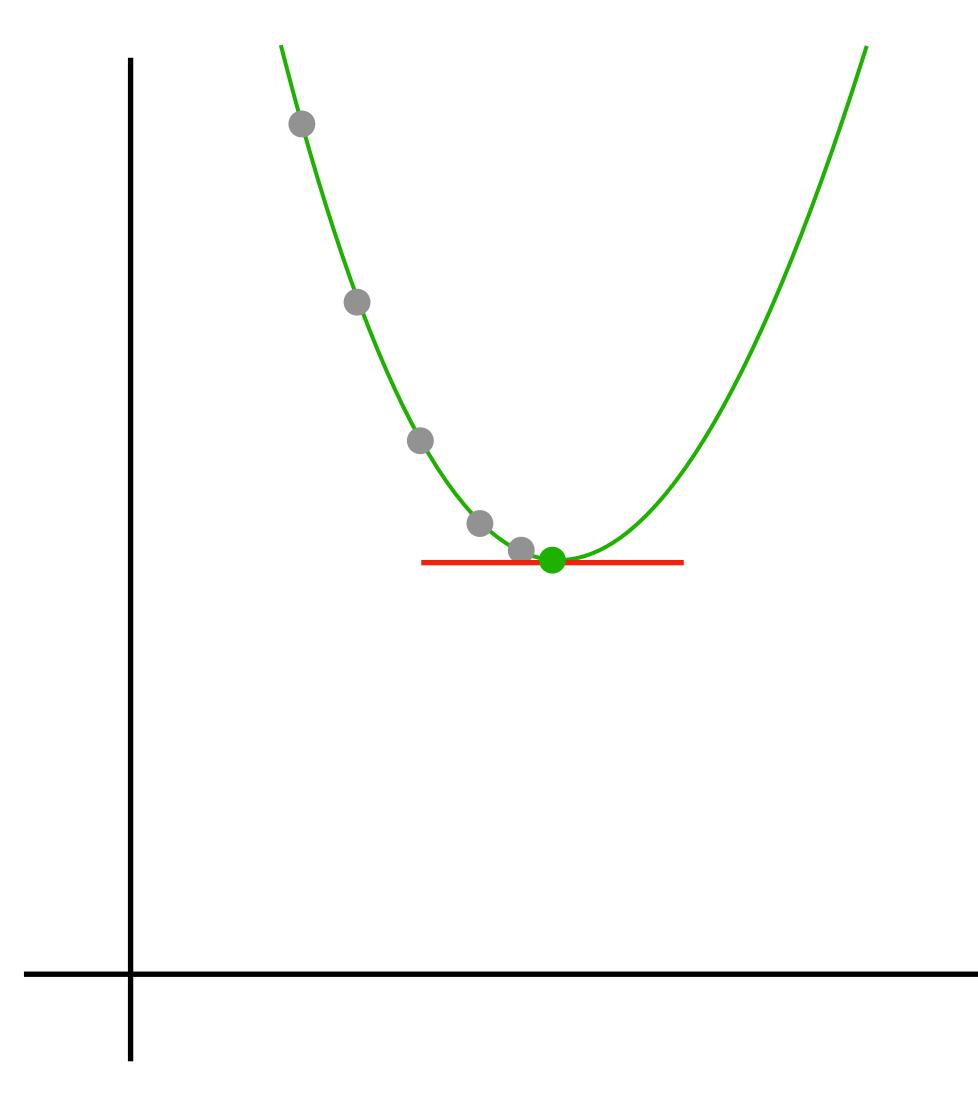
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Step 5: Go to step 2 and repeat



Gradient Descent

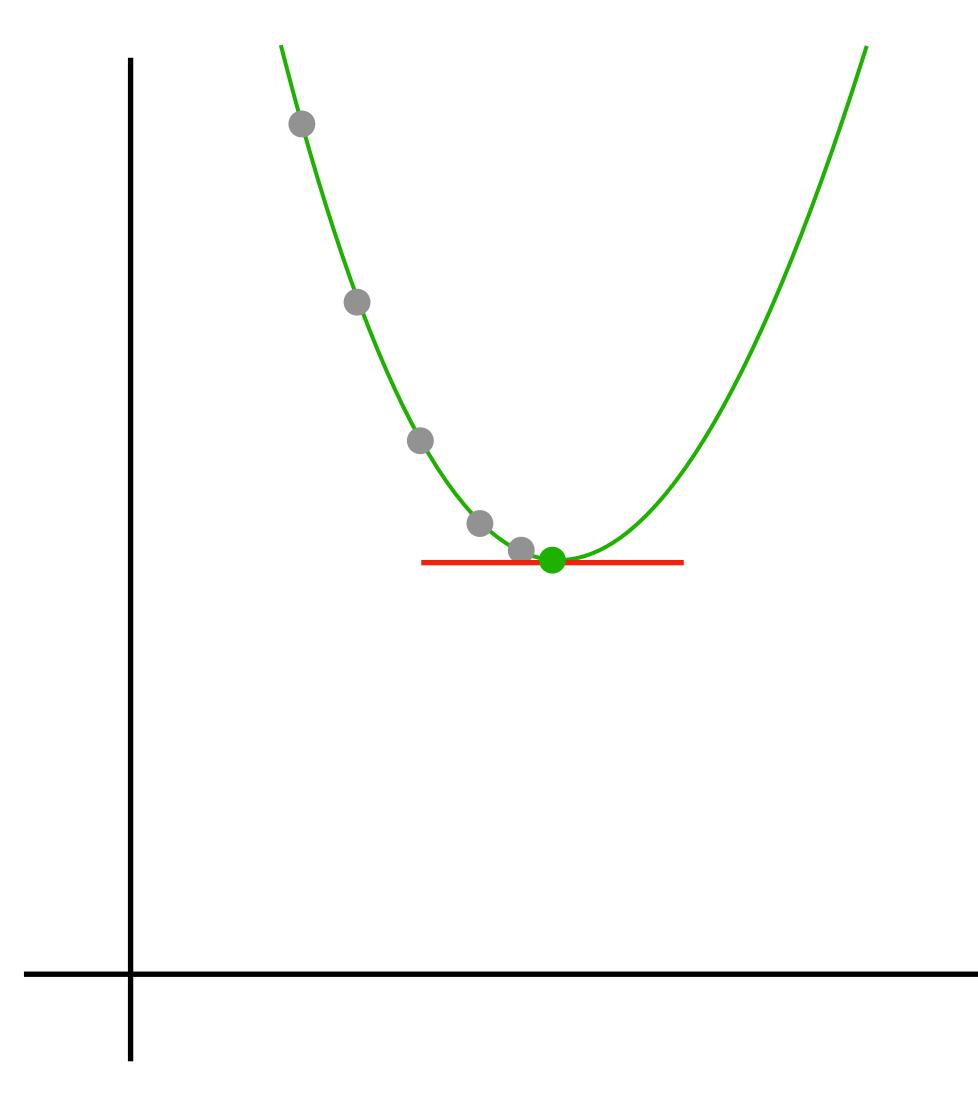
Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size



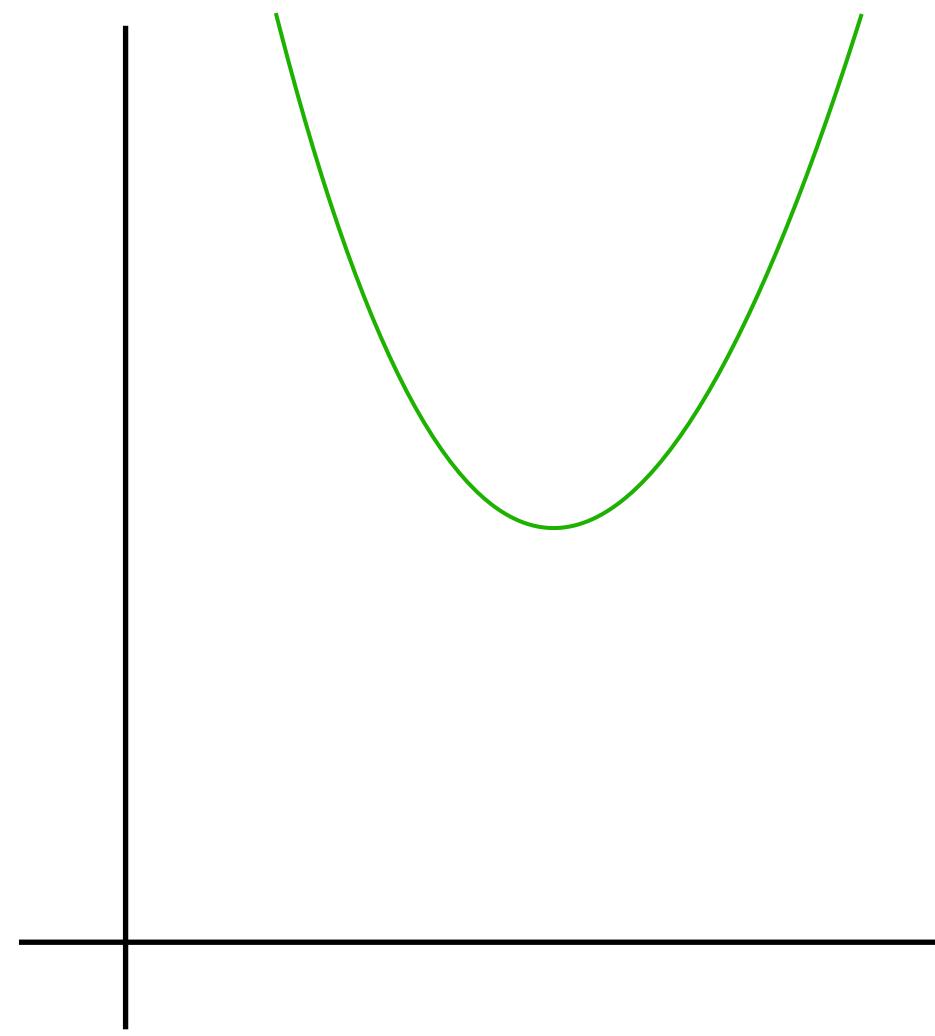
Gradient Descent

Gradient Descent: Basic Concept

Gradient Descent continues in this manner until the step size is close to zero or a fixed number of iterations

Gradient Descent: Lets walk through the algorithm

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)



Mean Squared Error (MSE)

Gradient Descent

Gradient Descent: Basic Concept

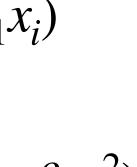
The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

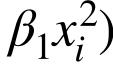
Mean Squared Error (MSE)

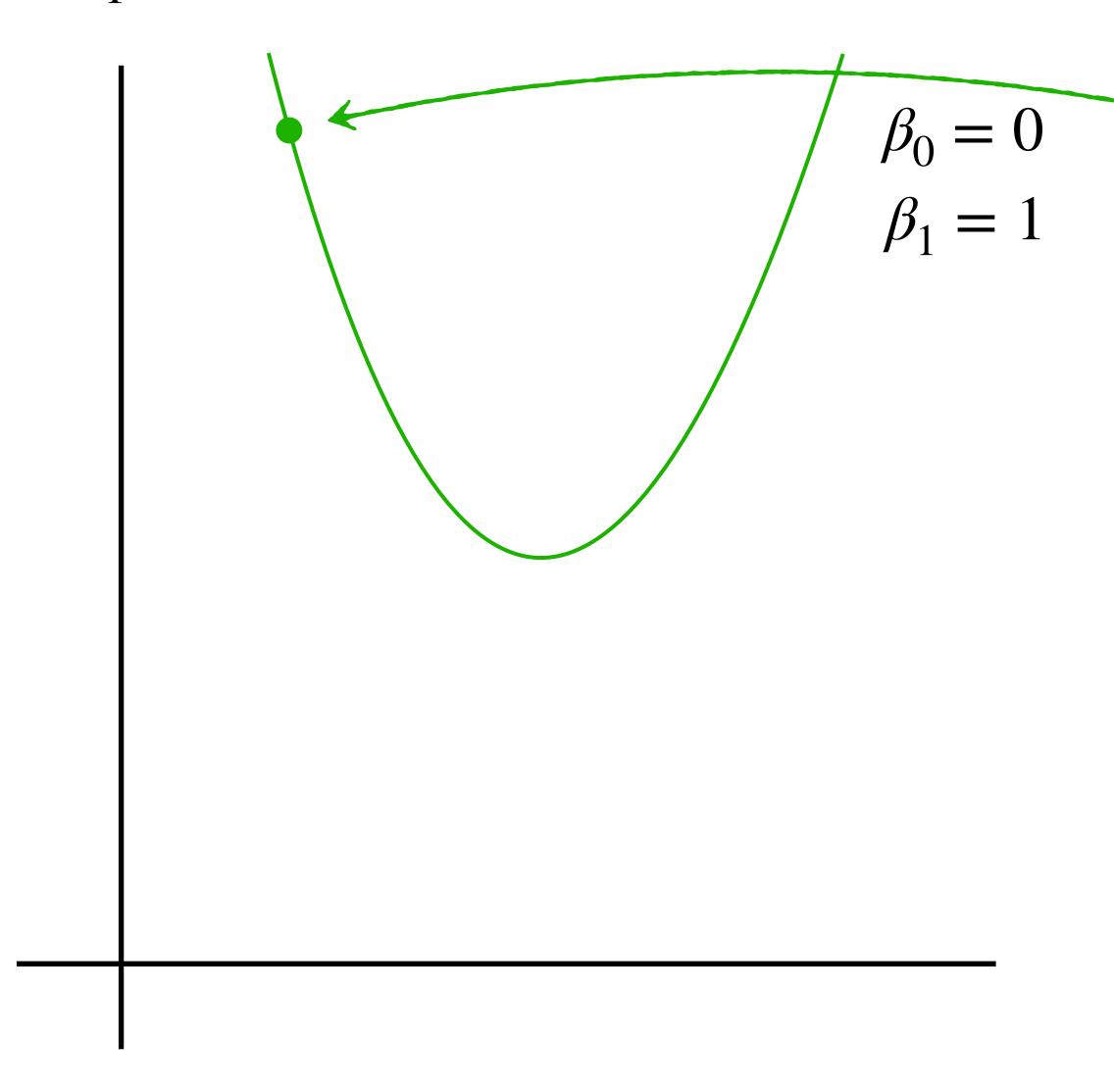
$$\frac{1}{2n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

The first derivative w.r.t β_0 and β_1 is...

$$\frac{\partial}{\partial\beta_0} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2$$
$$\frac{\partial}{\partial\beta_1} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^n (x_i y_i - \beta_0 x_i - \beta_1 x_i)^2$$







Mean Squared Error (MSE)

Gradient Descent

Gradient Descent: Algorithm

Step 1: Start with random values for β_0 **and** β_1

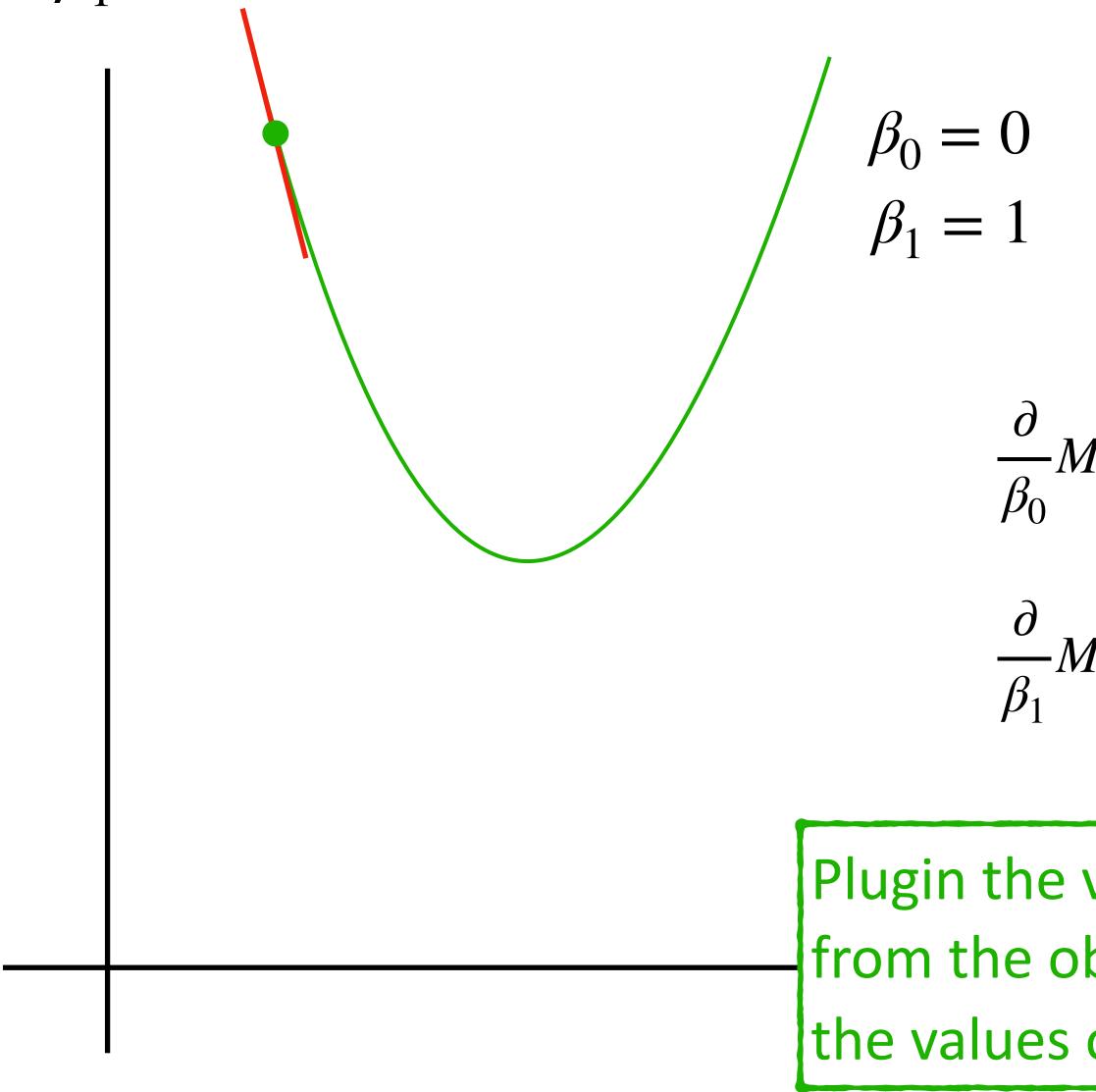
Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Step 5: Go to step 2 and repeat

Mean Squared Error (MSE)



Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

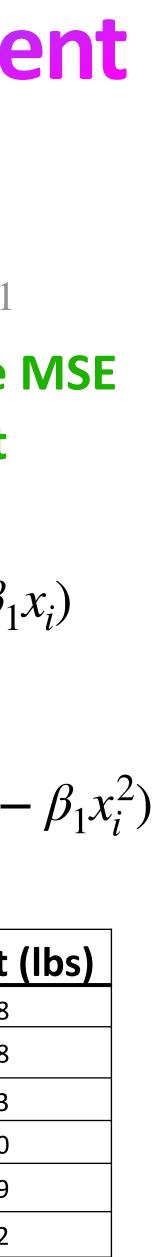
Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

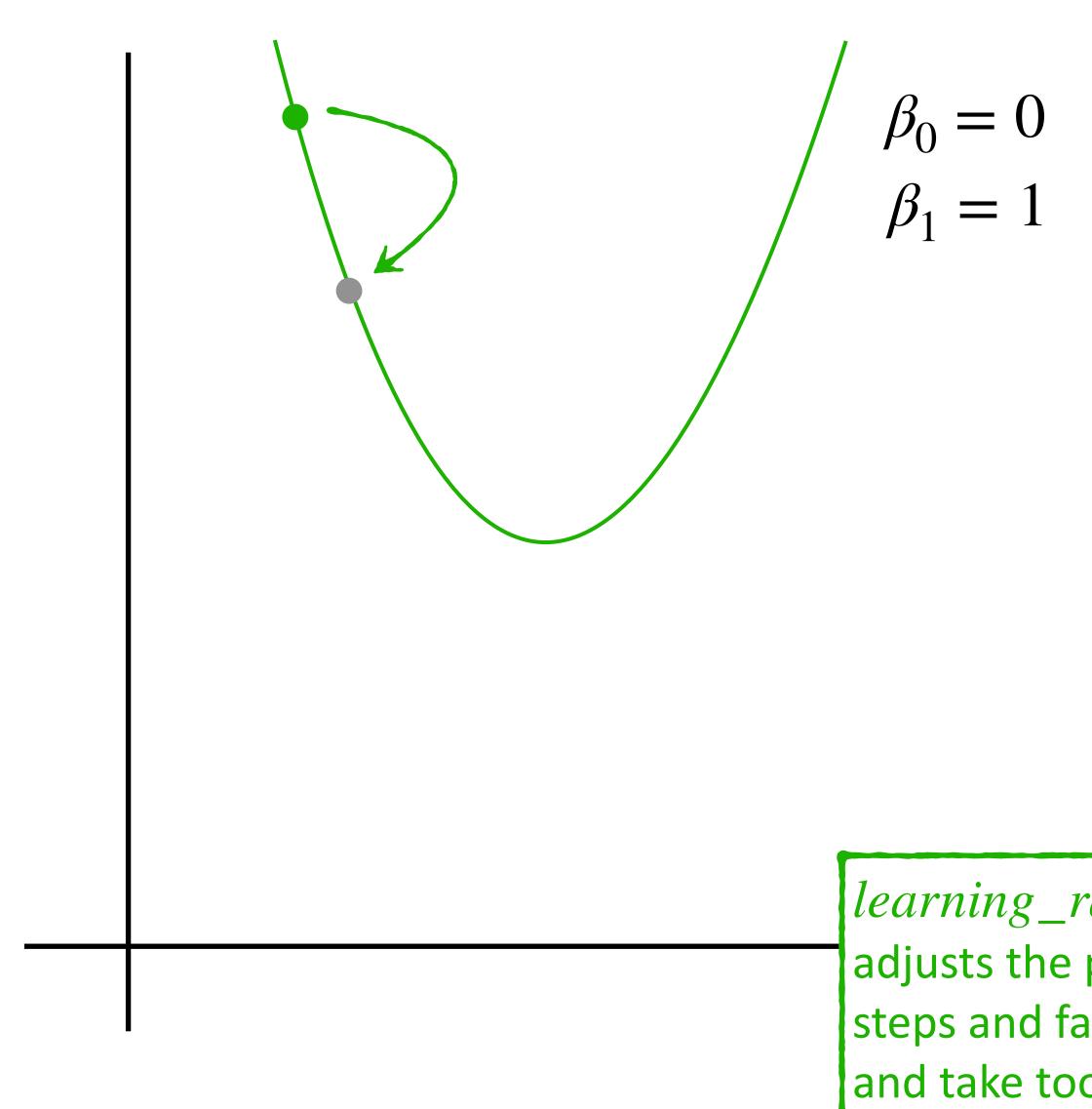
$$ASE = \frac{\partial}{\partial \beta_0} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

$$ASE = \frac{\partial}{\partial \beta_1} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^n (x_i y_i - \beta_0 x_i - \beta_0 x_i)^2$$

$$Values of x_i and y_i$$
bservations and
of β_0 and β_1

$$Values of \beta_0 = 0$$





Mean Squared Error (MSE)

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

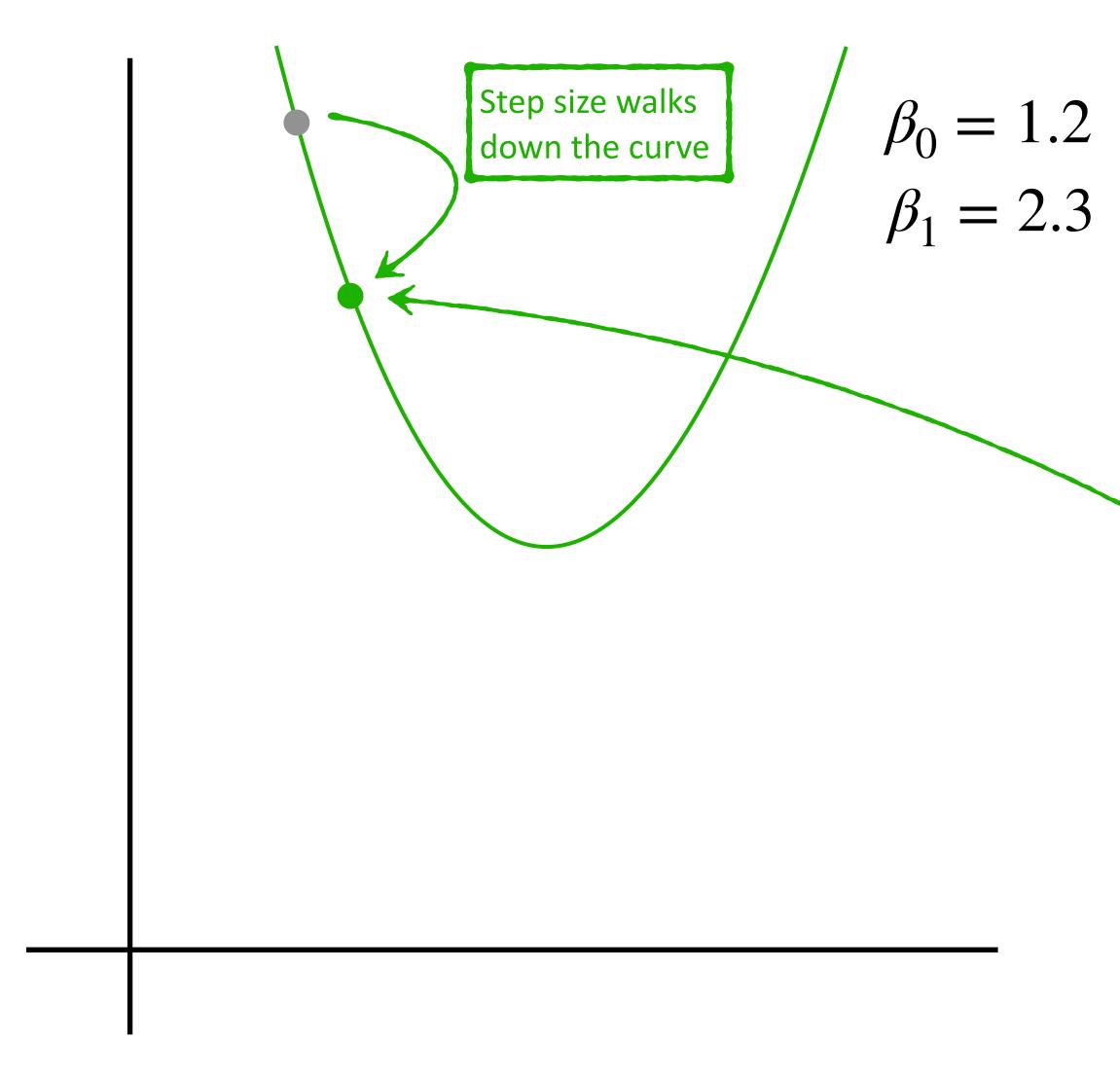
Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$step_size_{\beta_0} = \frac{\partial}{\beta_0} MSE \times learning_rate$$
$$step_size_{\beta_1} = \frac{\partial}{\beta_1} MSE \times learning_rate$$

learning_rate is a small value that determines how the algorithm adjusts the parameters on each iteration. Too large and it will take big steps and fail to converge. Too small and it will take many small steps and take too long to converge.

e



Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

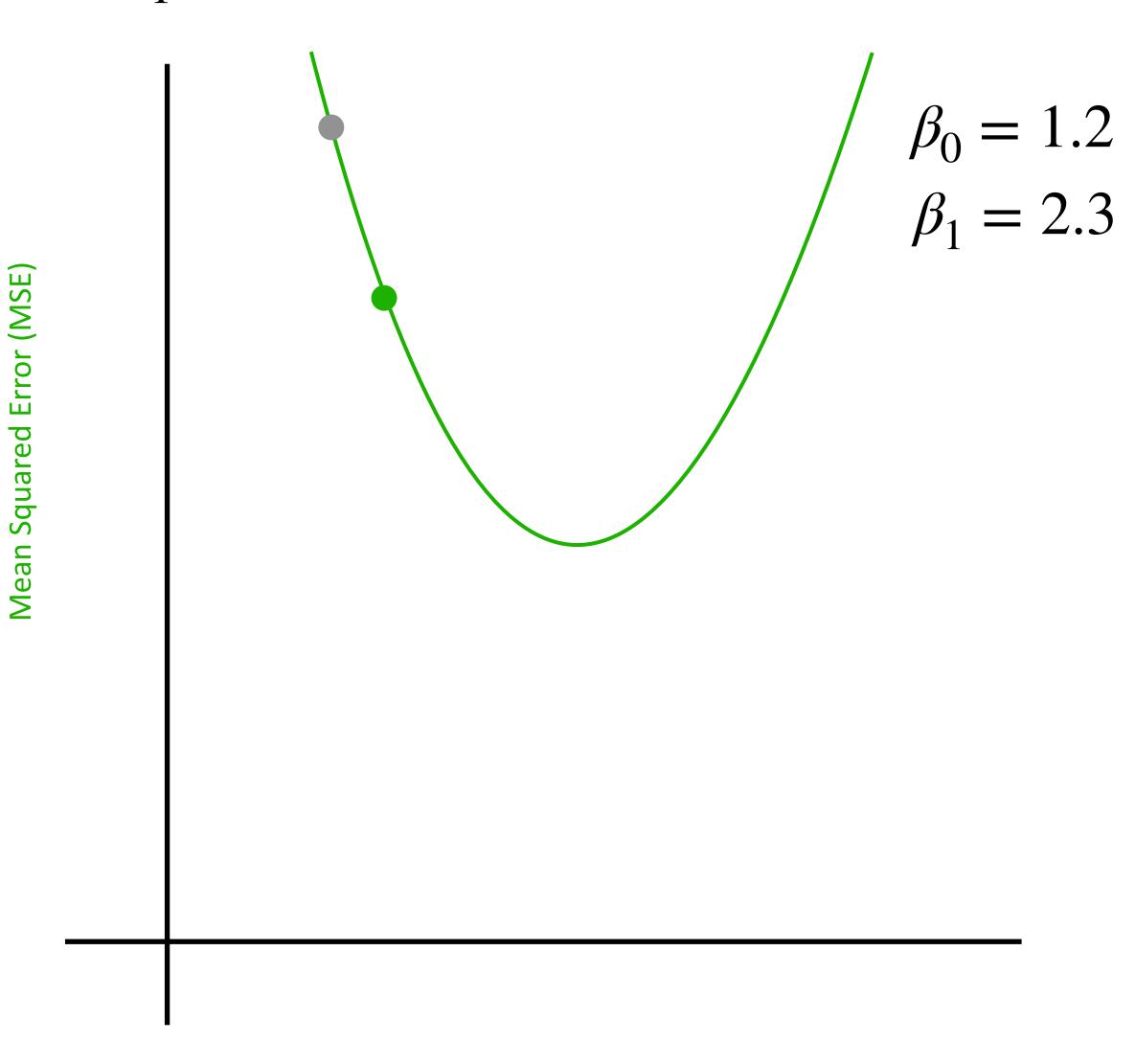
Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 **and** β_1 **by** subtracting the step size

$$\beta_0 = \beta_0 - step_size_{\beta_0}$$

$$\beta_1 = \beta_1 - step_size_{\beta_1}$$



Gradient Descent

Gradient Descent: Basic Concept

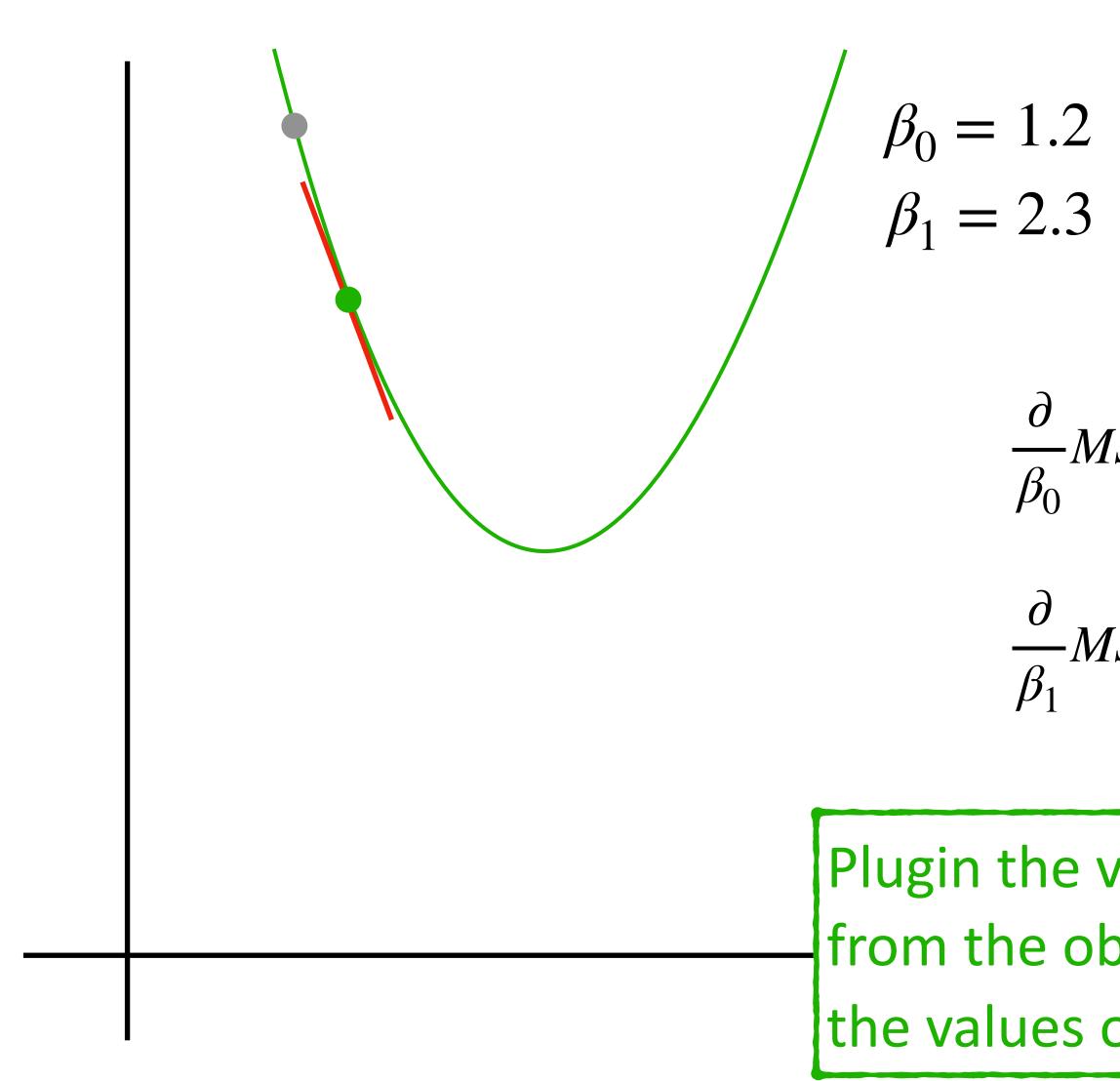
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Step 5: Go to step 2 and repeat



Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

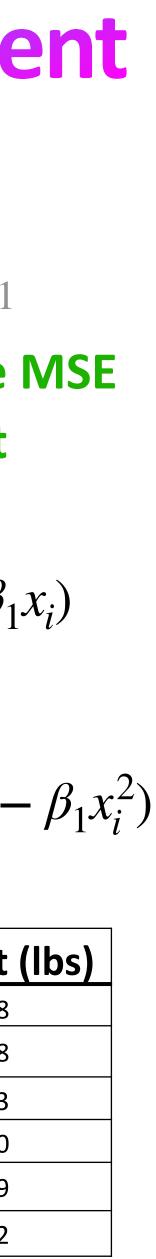
Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

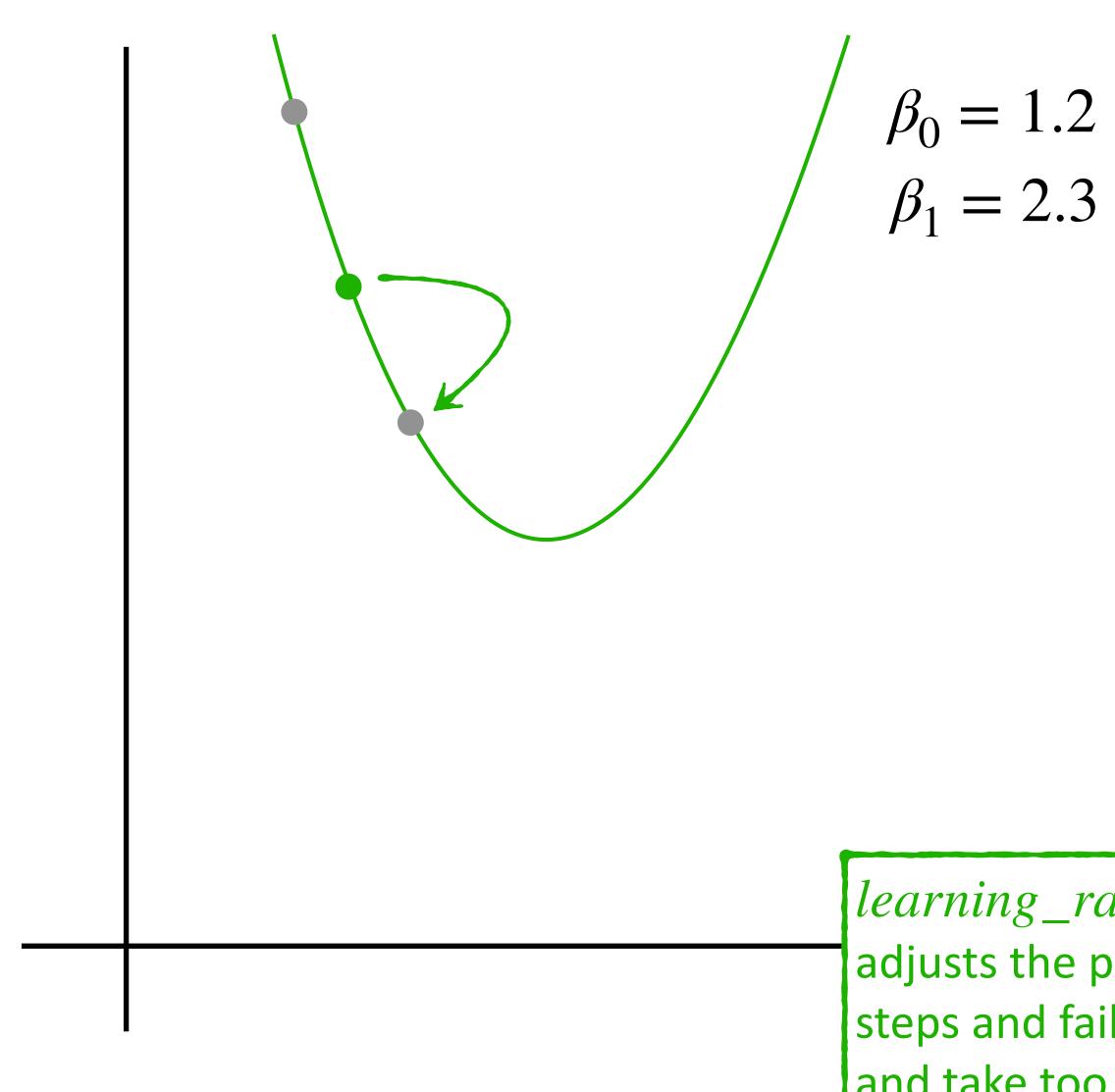
$$ASE = \frac{\partial}{\partial \beta_0} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

$$ASE = \frac{\partial}{\partial \beta_1} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^n (x_i y_i - \beta_0 x_i - \beta_0 x_i)^2$$

$$Values of x_i and y_i$$
bservations and
of β_0 and β_1

$$Values of \beta_0 = 0$$





Gradient Descent

Gradient Descent: Basic Concept

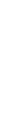
Step 1: Start with random values for β_0 and β_1

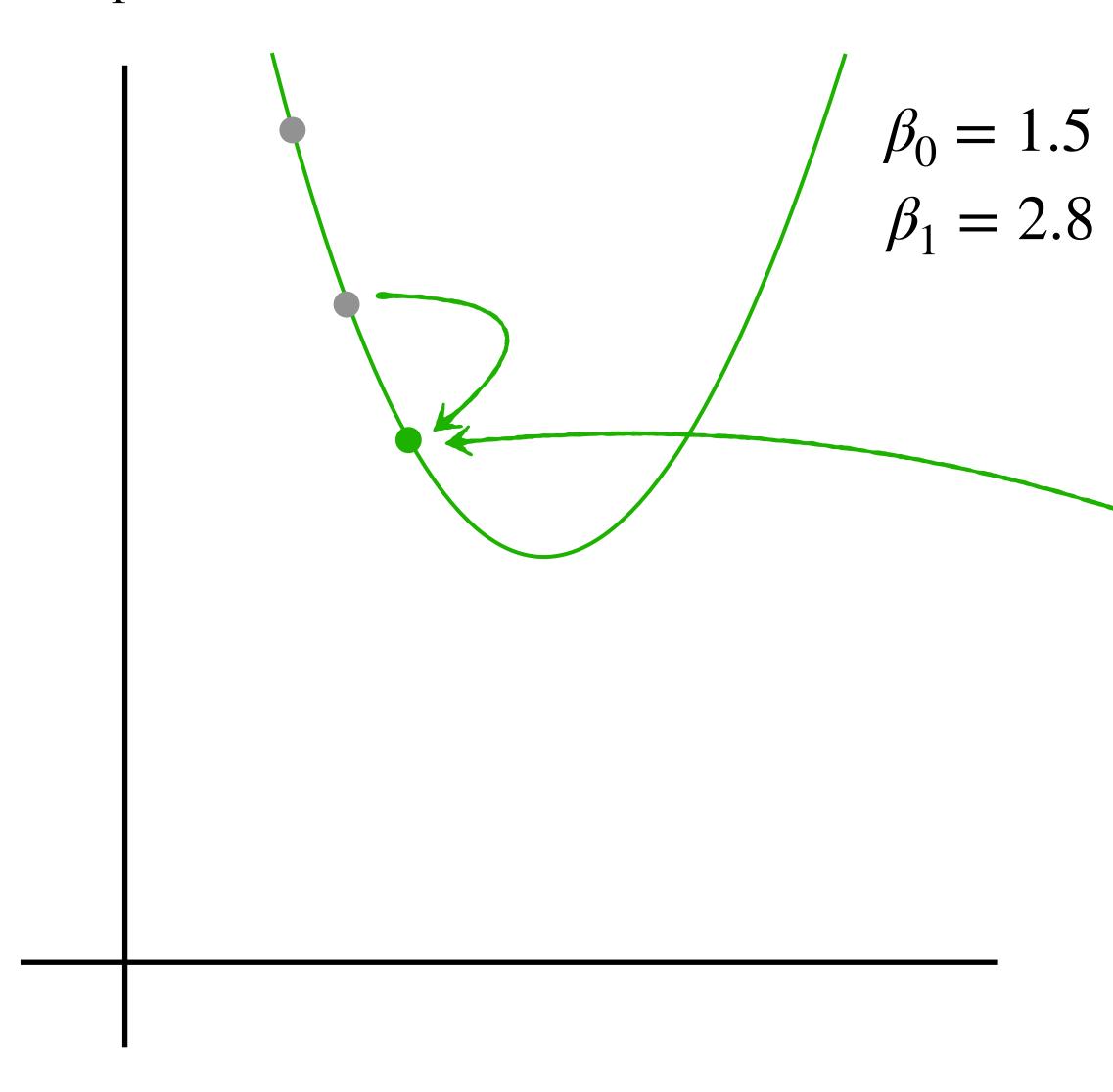
Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$step_size_{\beta_0} = \frac{\partial}{\beta_0} MSE \times learning_rate$$
$$step_size_{\beta_1} = \frac{\partial}{\beta_1} MSE \times learning_rate$$

learning_rate is a small value that determines how the algorithm adjusts the parameters on each iteration. Too large and it will take big steps and fail to converge. Too small and it will take many small steps and take too long to converge.





Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Mean Squared Error (MSE)

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

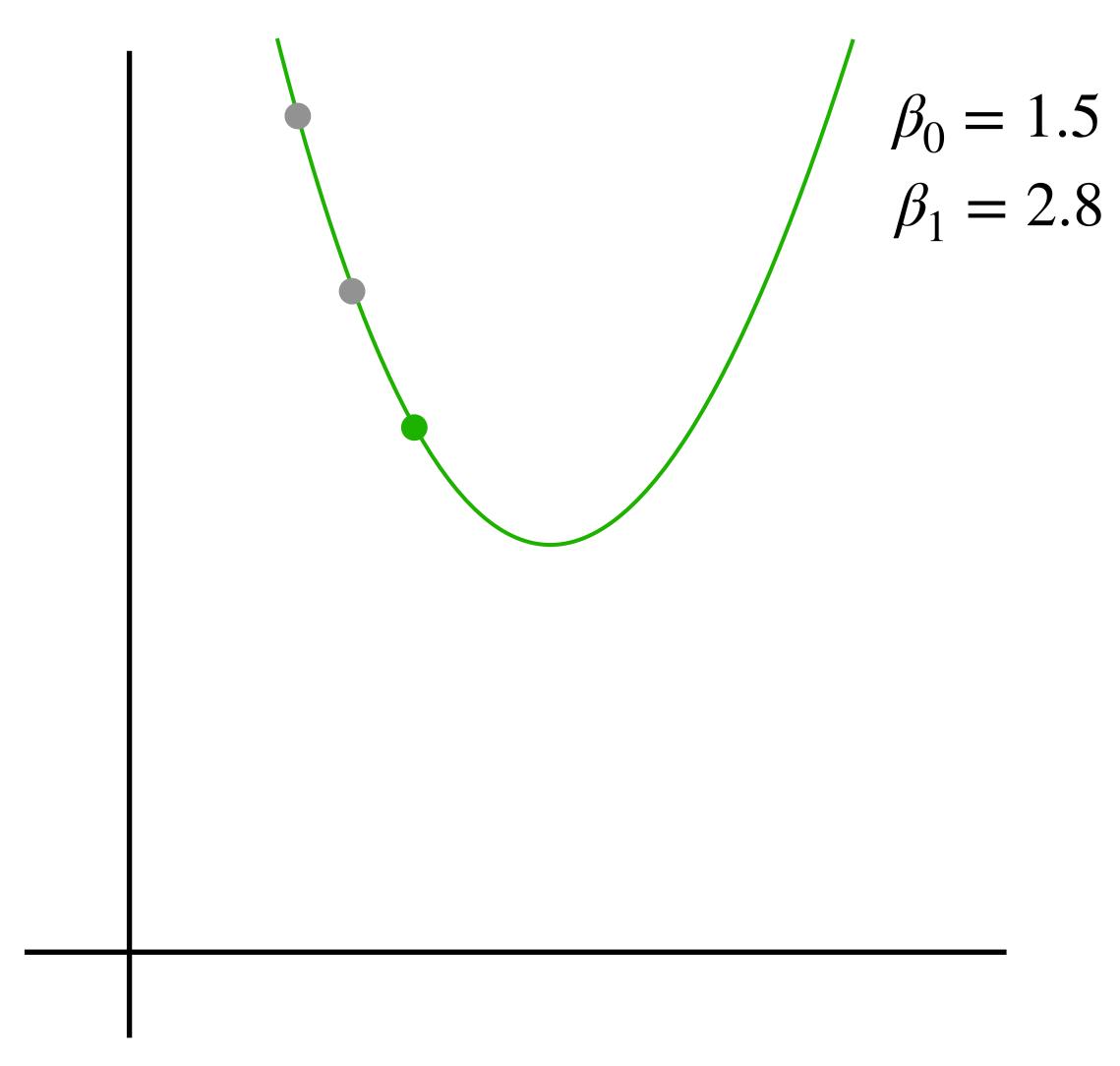
Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 **and** β_1 **by** subtracting the step size

$$\beta_0 = \beta_0 - step_size_{\beta_0}$$

$$\beta_1 = \beta_1 - step_size_{\beta_1}$$



Gradient Descent

Gradient Descent: Basic Concept

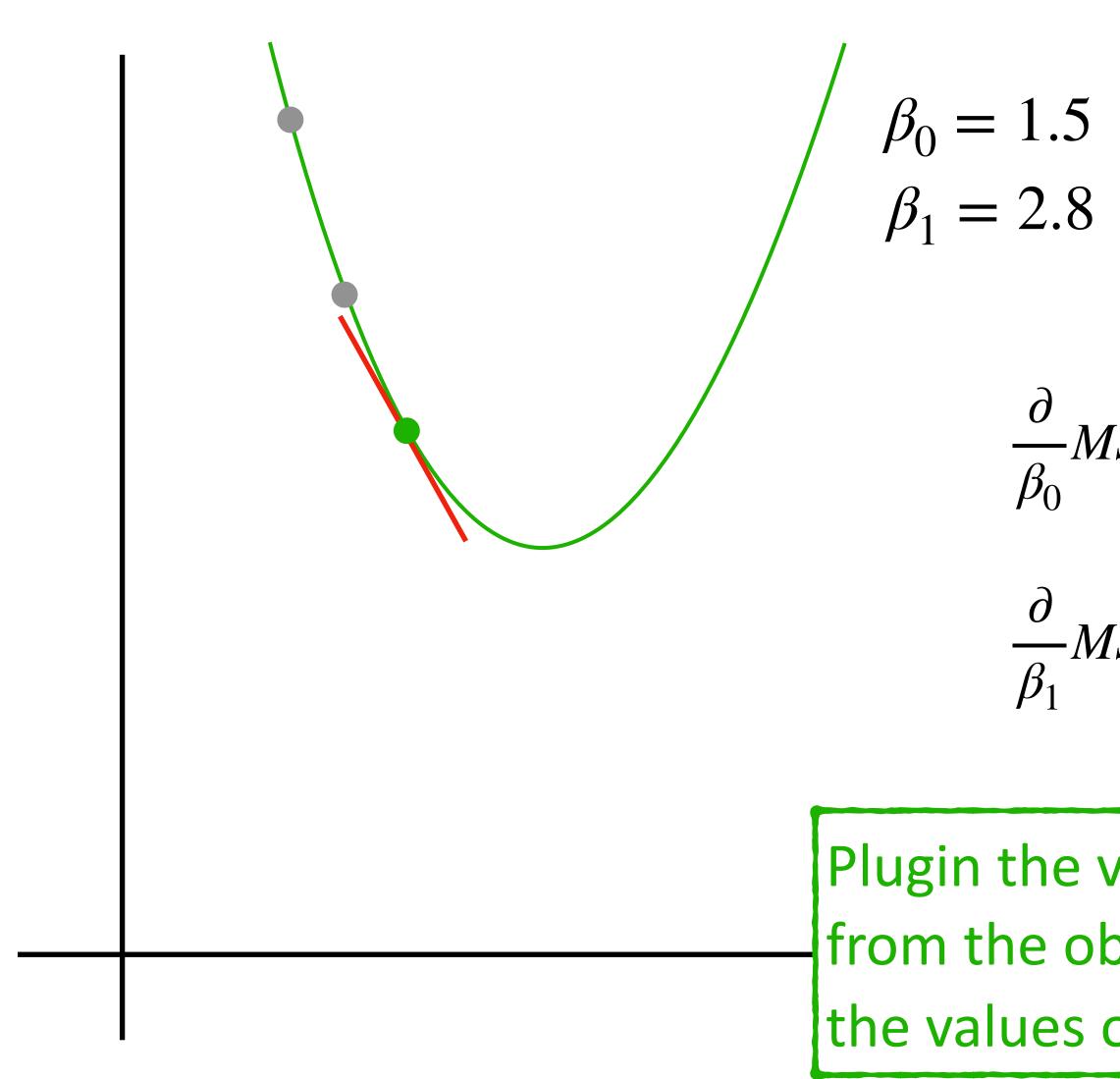
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Step 5: Go to step 2 and repeat



Mean Squared Error (MSE)

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

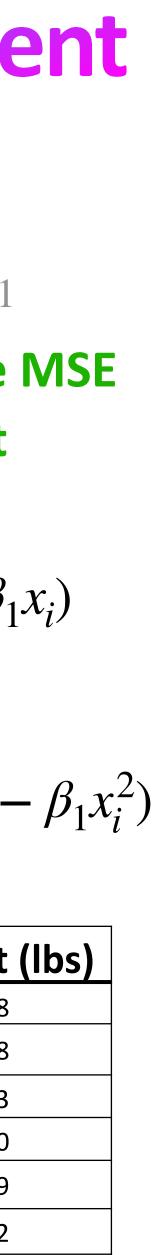
Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

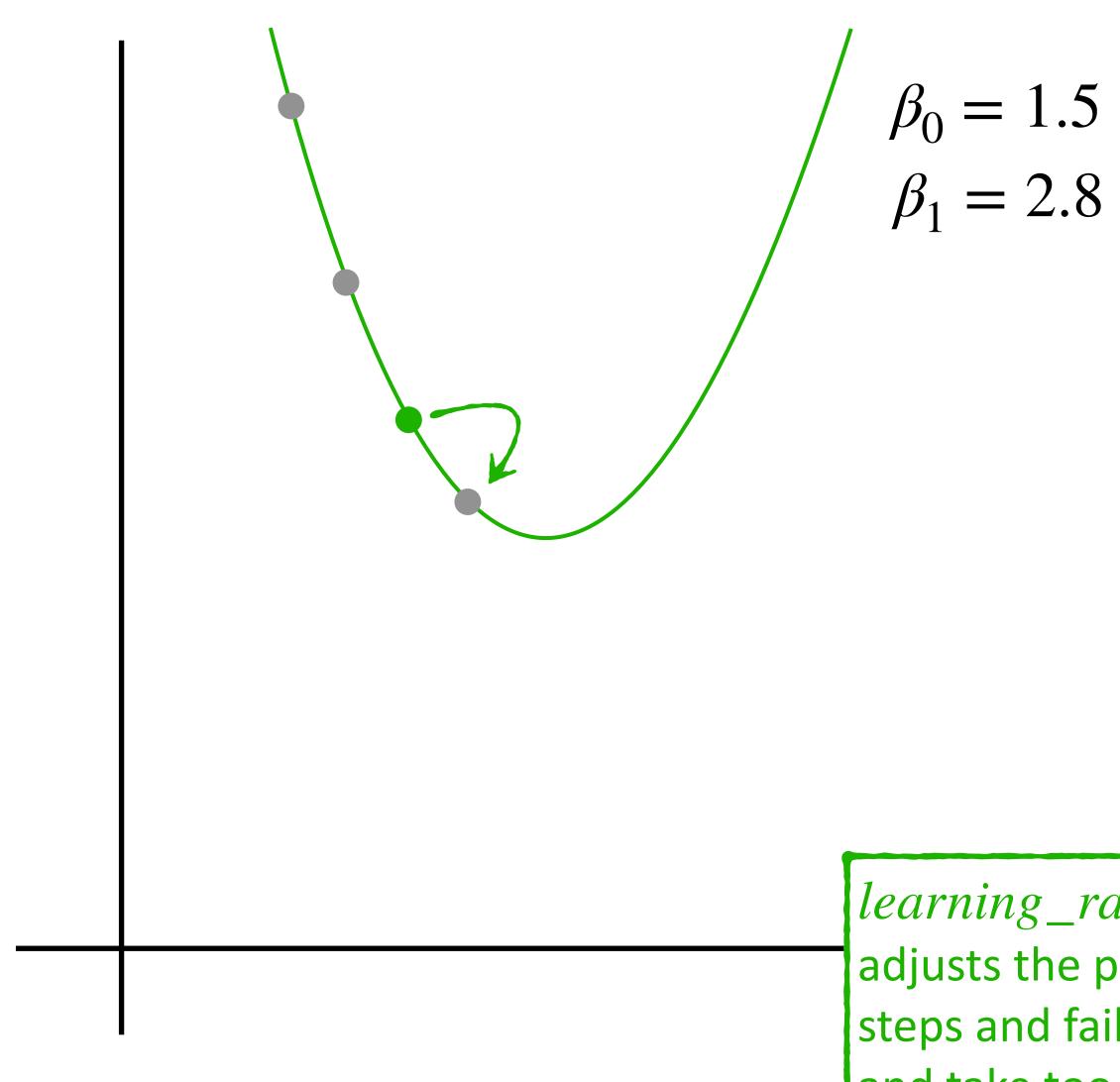
$$ASE = \frac{\partial}{\partial \beta_0} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

$$ASE = \frac{\partial}{\partial \beta_1} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^n (x_i y_i - \beta_0 x_i - \beta_0 x_i)^2$$

$$Values of x_i and y_i$$
bservations and
of β_0 and β_1

$$Values of \beta_0 and \beta_1$$





Mean Squared Error (MSE)

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

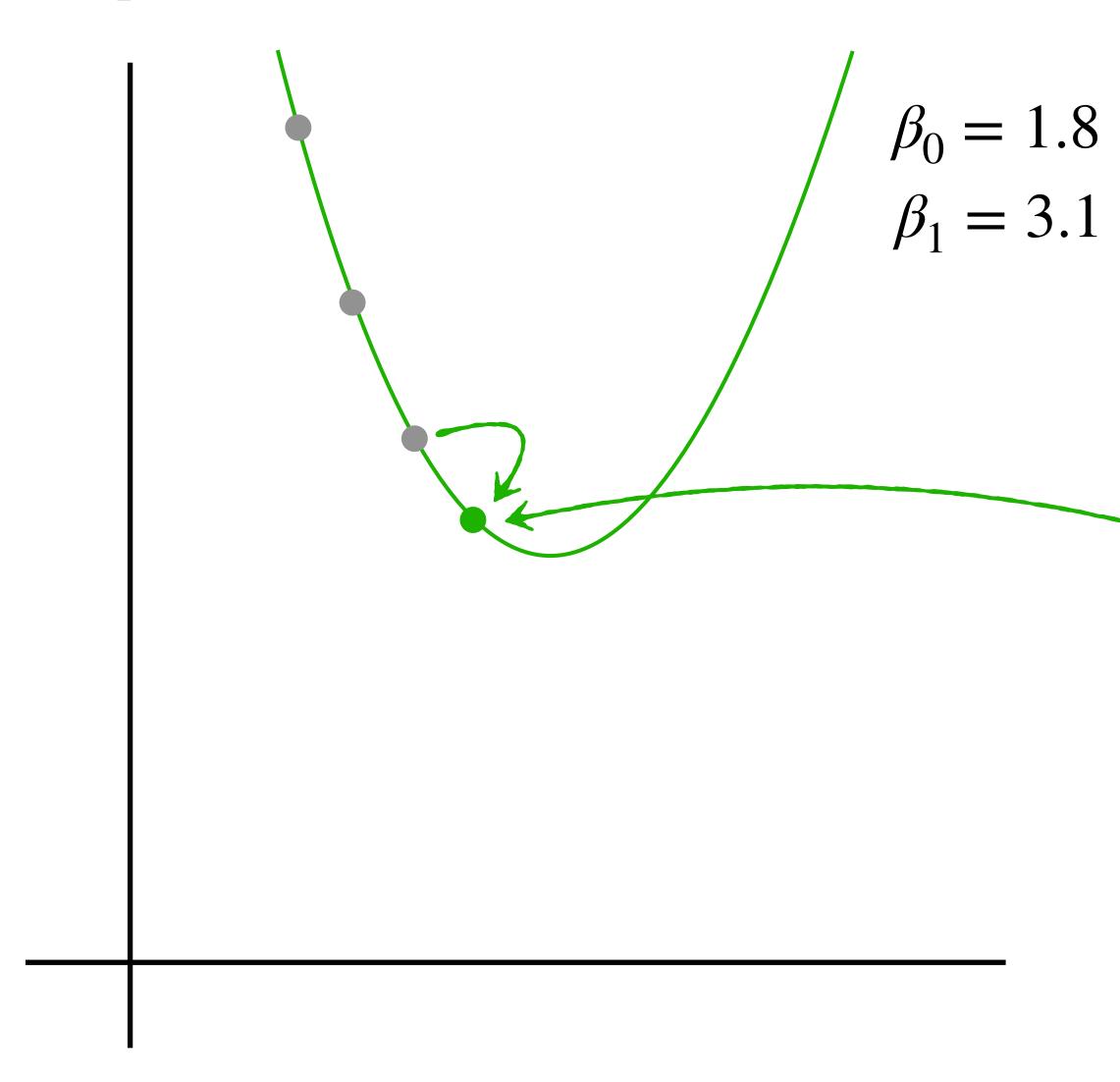
Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$step_size_{\beta_0} = \frac{\partial}{\beta_0} MSE \times learning_rate$$
$$step_size_{\beta_1} = \frac{\partial}{\beta_1} MSE \times learning_rate$$

learning_rate is a small value that determines how the algorithm adjusts the parameters on each iteration. Too large and it will take big steps and fail to converge. Too small and it will take many small steps and take too long to converge.

e



Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

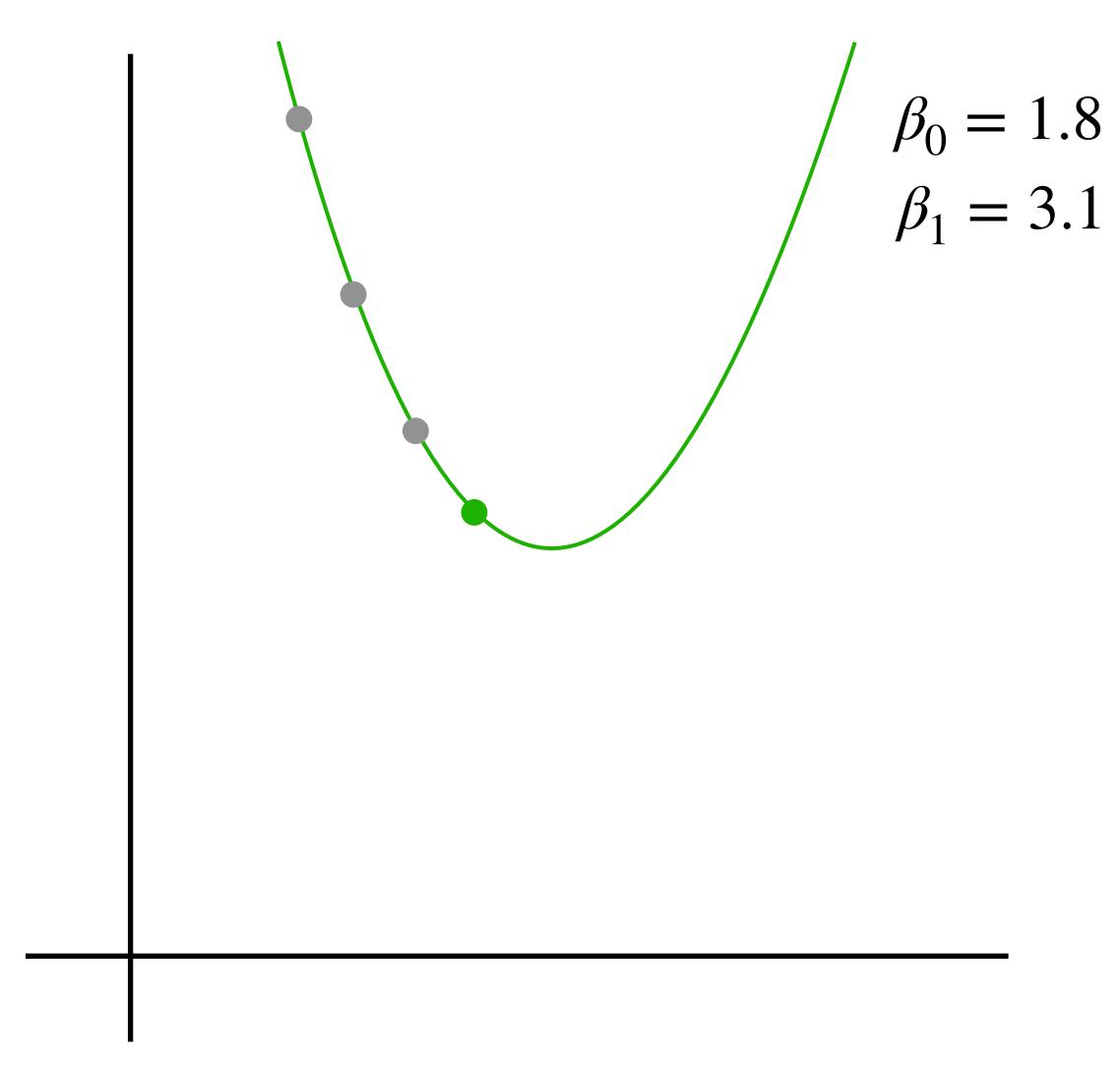
Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 **and** β_1 **by** subtracting the step size

$$\beta_0 = \beta_0 - step_size_{\beta_0}$$

$$\beta_1 = \beta_1 - step_size_{\beta_1}$$



Gradient Descent

Gradient Descent: Basic Concept

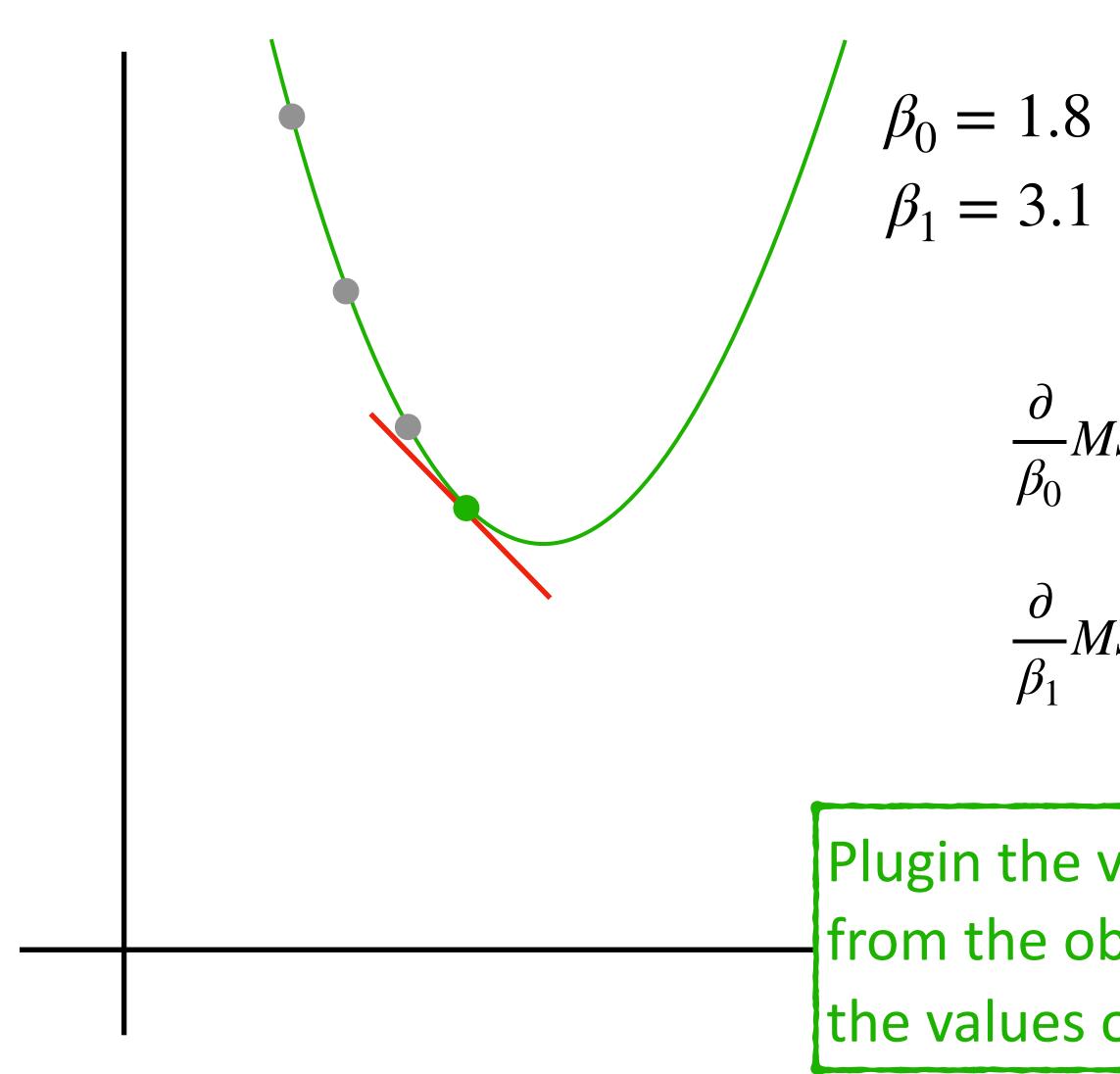
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Step 5: Go to step 2 and repeat



Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

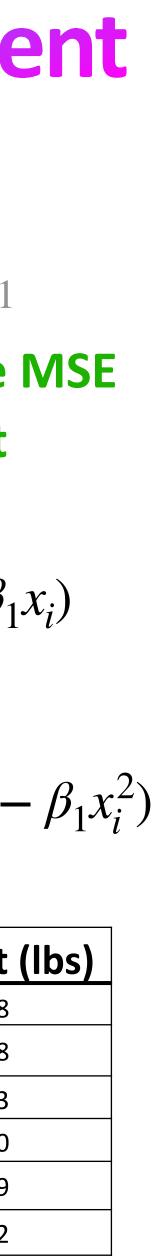
Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

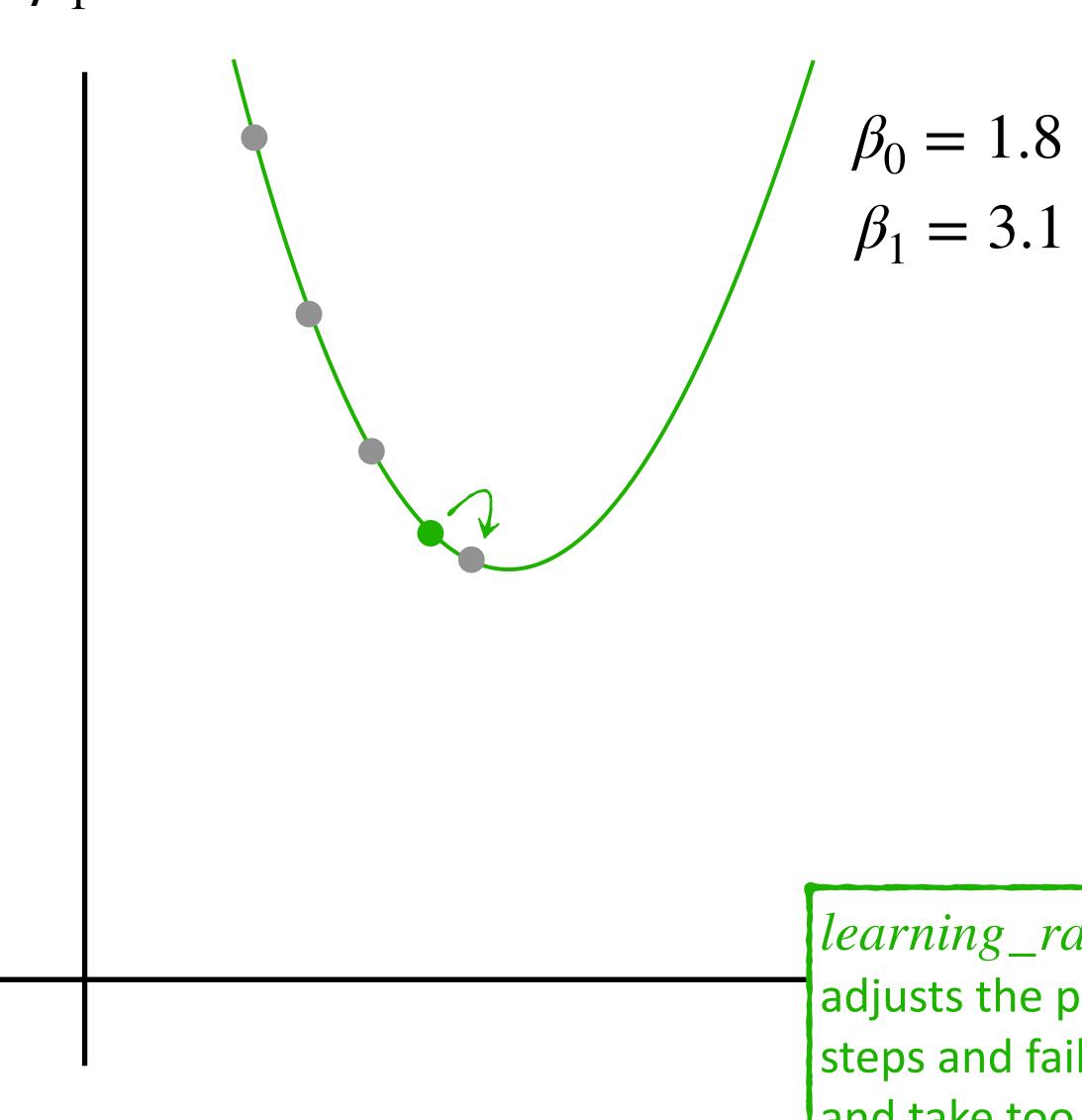
$$ASE = \frac{\partial}{\partial \beta_0} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

$$ASE = \frac{\partial}{\partial \beta_1} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^n (x_i y_i - \beta_0 x_i - \beta_0 x_i)^2$$

$$Values of x_i and y_i$$
bservations and
of β_0 and β_1

$$Values of \beta_0 = 0$$





Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

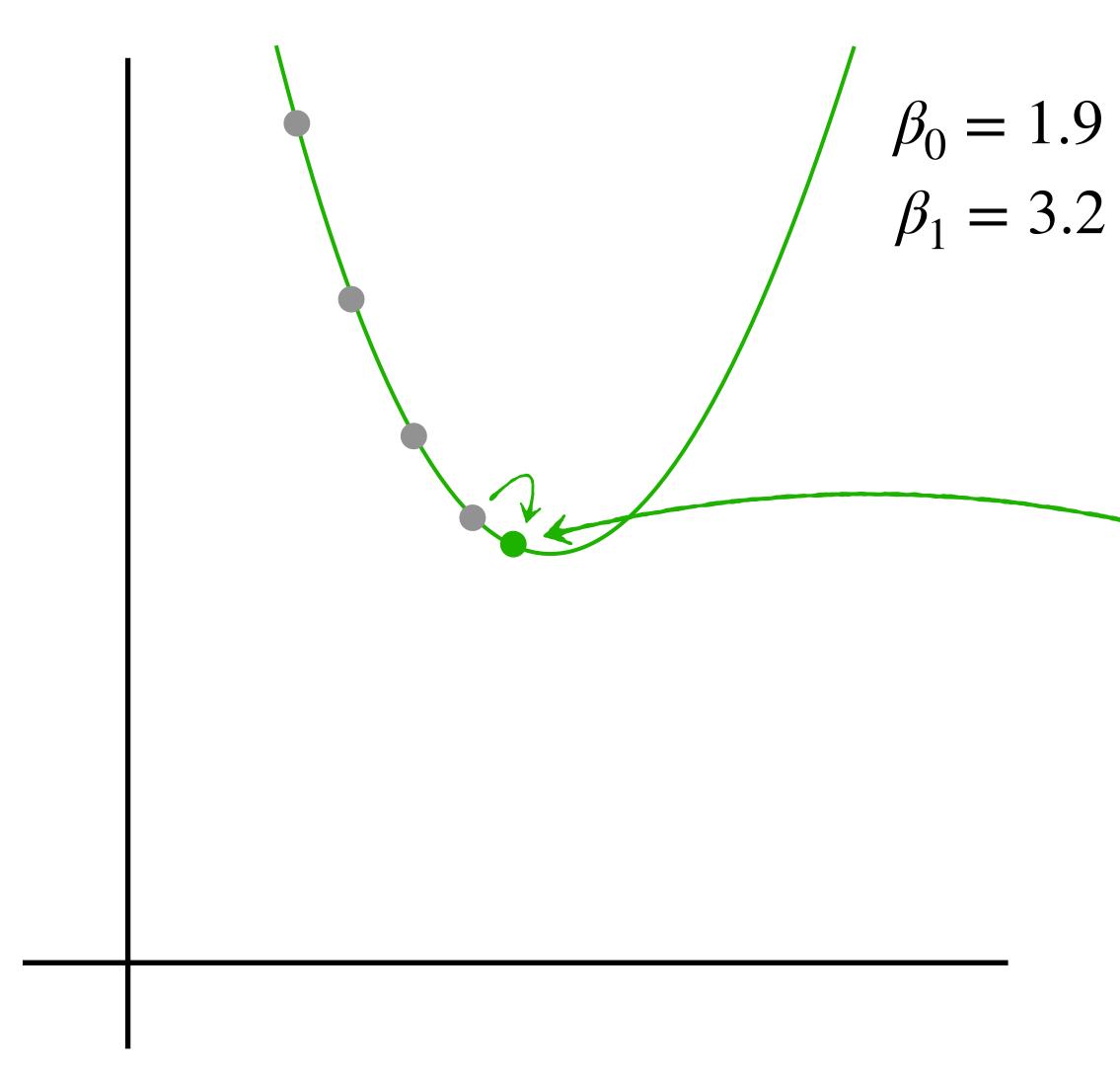
Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$step_size_{\beta_0} = \frac{\partial}{\beta_0} MSE \times learning_rate$$
$$step_size_{\beta_1} = \frac{\partial}{\beta_1} MSE \times learning_rate$$

learning_rate is a small value that determines how the algorithm adjusts the parameters on each iteration. Too large and it will take big steps and fail to converge. Too small and it will take many small steps and take too long to converge.





Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

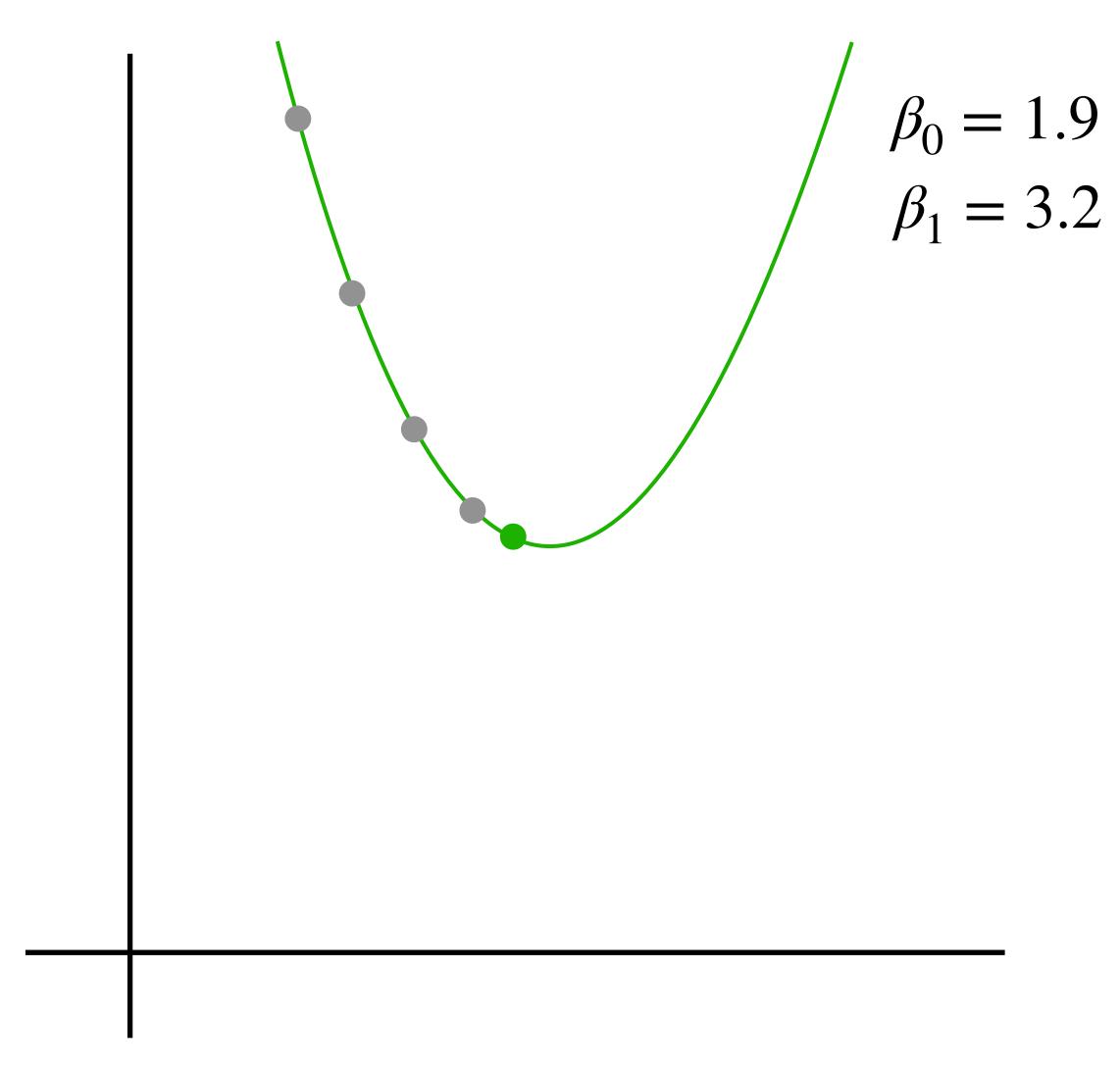
Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

$$\beta_0 = \beta_0 - step_size_{\beta_0}$$

$$\beta_1 = \beta_1 - step_size_{\beta_1}$$



Gradient Descent

Gradient Descent: Basic Concept

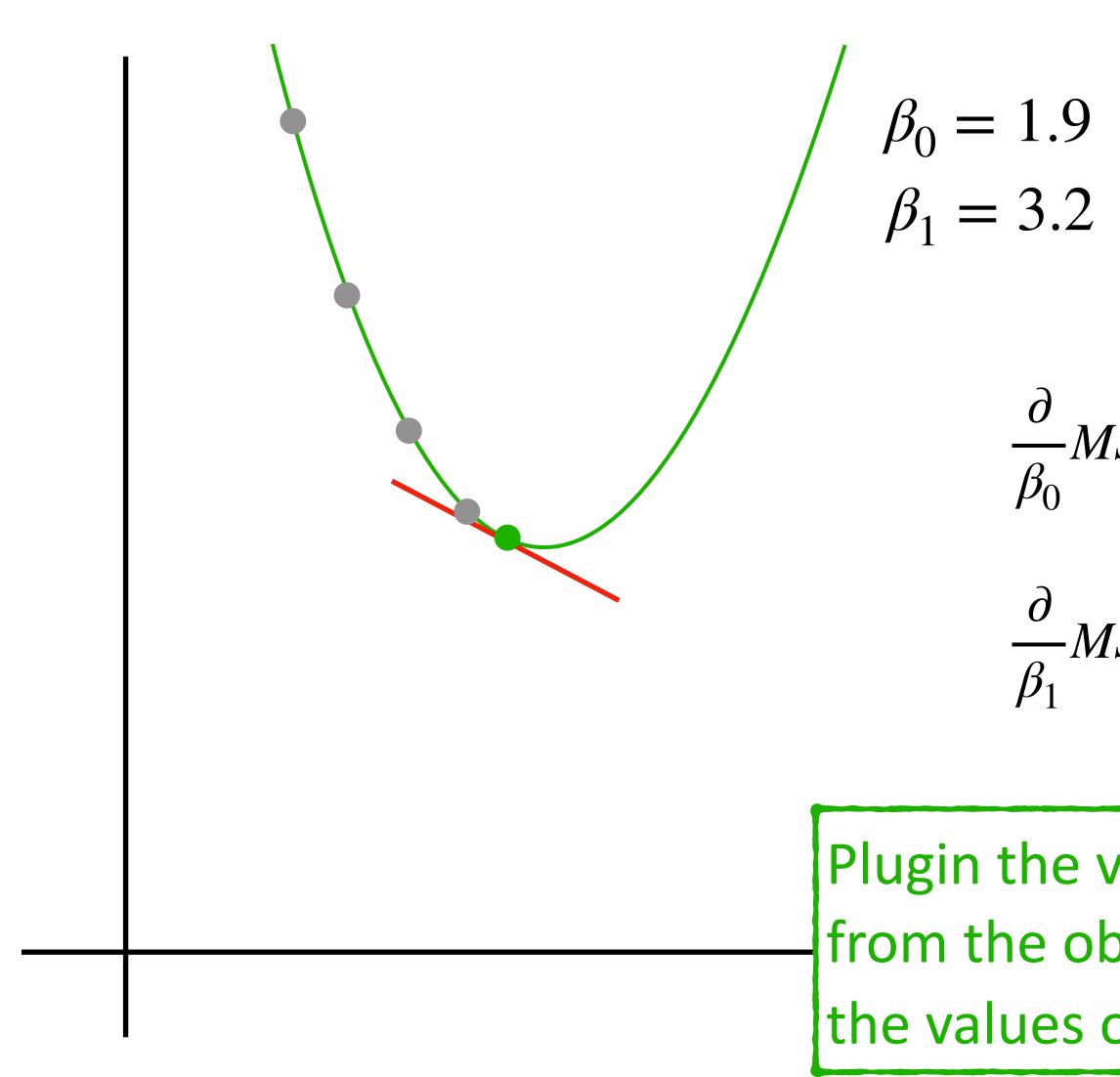
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Step 5: Go to step 2 and repeat



Mean Squared Error (MSE)

Gradient Descent

Gradient Descent: Basic Concept

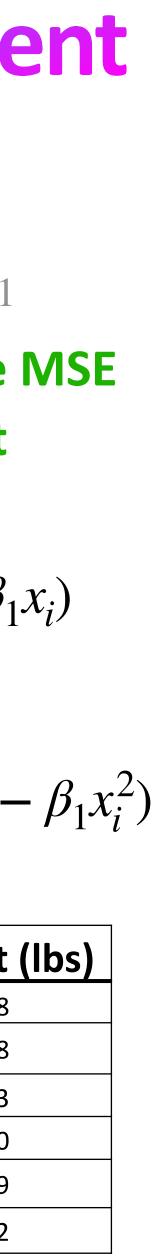
Step 1: Start with random values for β_0 and β_1

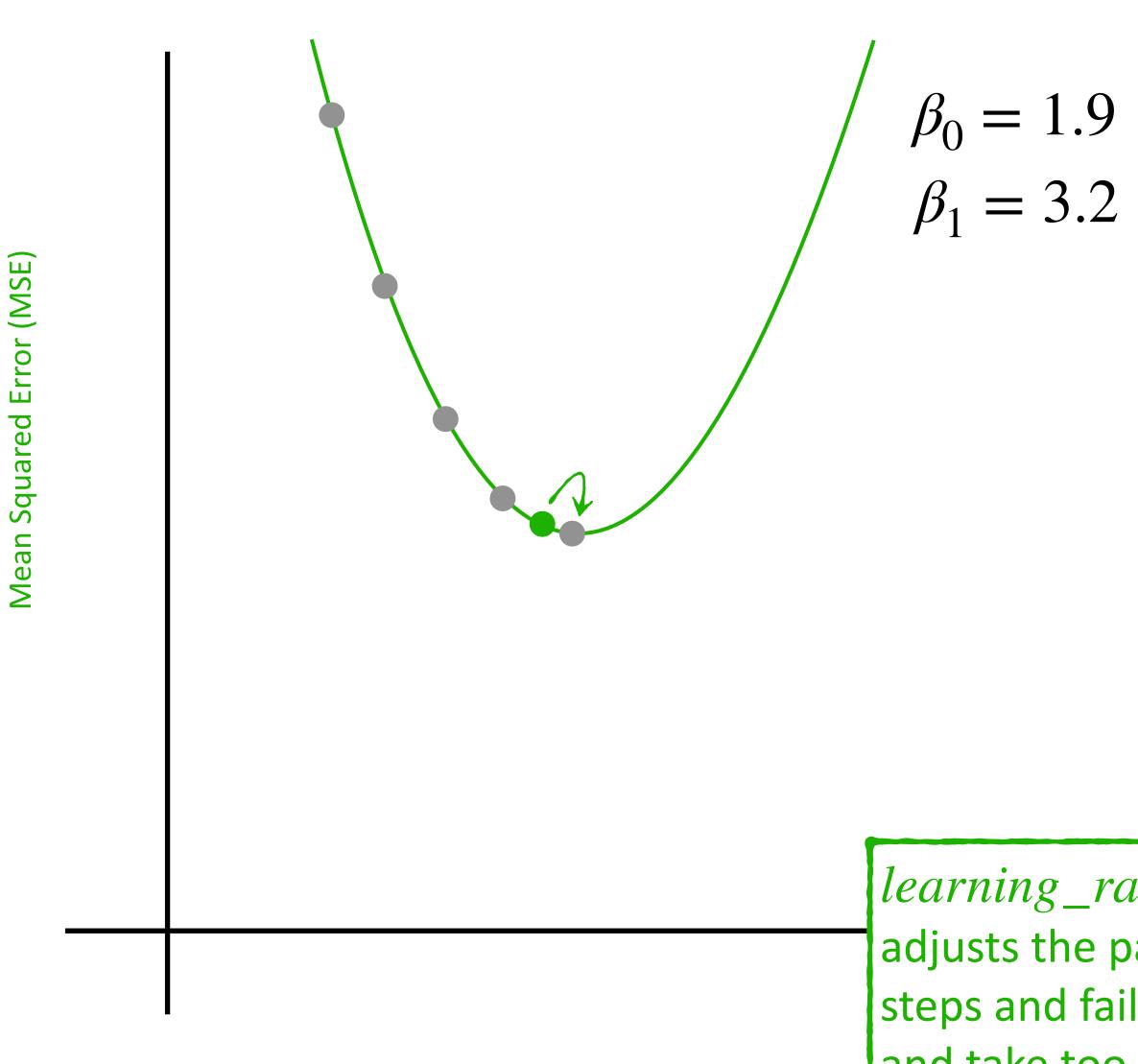
Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

$$ASE = \frac{\partial}{\partial \beta_0} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

$$ASE = \frac{\partial}{\partial \beta_1} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^{n} (x_i y_i - \beta_0 x_i - \beta_0 x_i)^2$$
values of x_i and y_i
bservations and
of β_0 and β_1

$$\begin{pmatrix} i & \text{Height (in) Weight} \\ 0 & 62 & 138 \\ 1 & 55 & 178 \\ 2 & 44 & 123 \\ 3 & 75 & 200 \\ 4 & 65 & 229 \\ 5 & 50 & 102 \\ \end{pmatrix}$$





Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

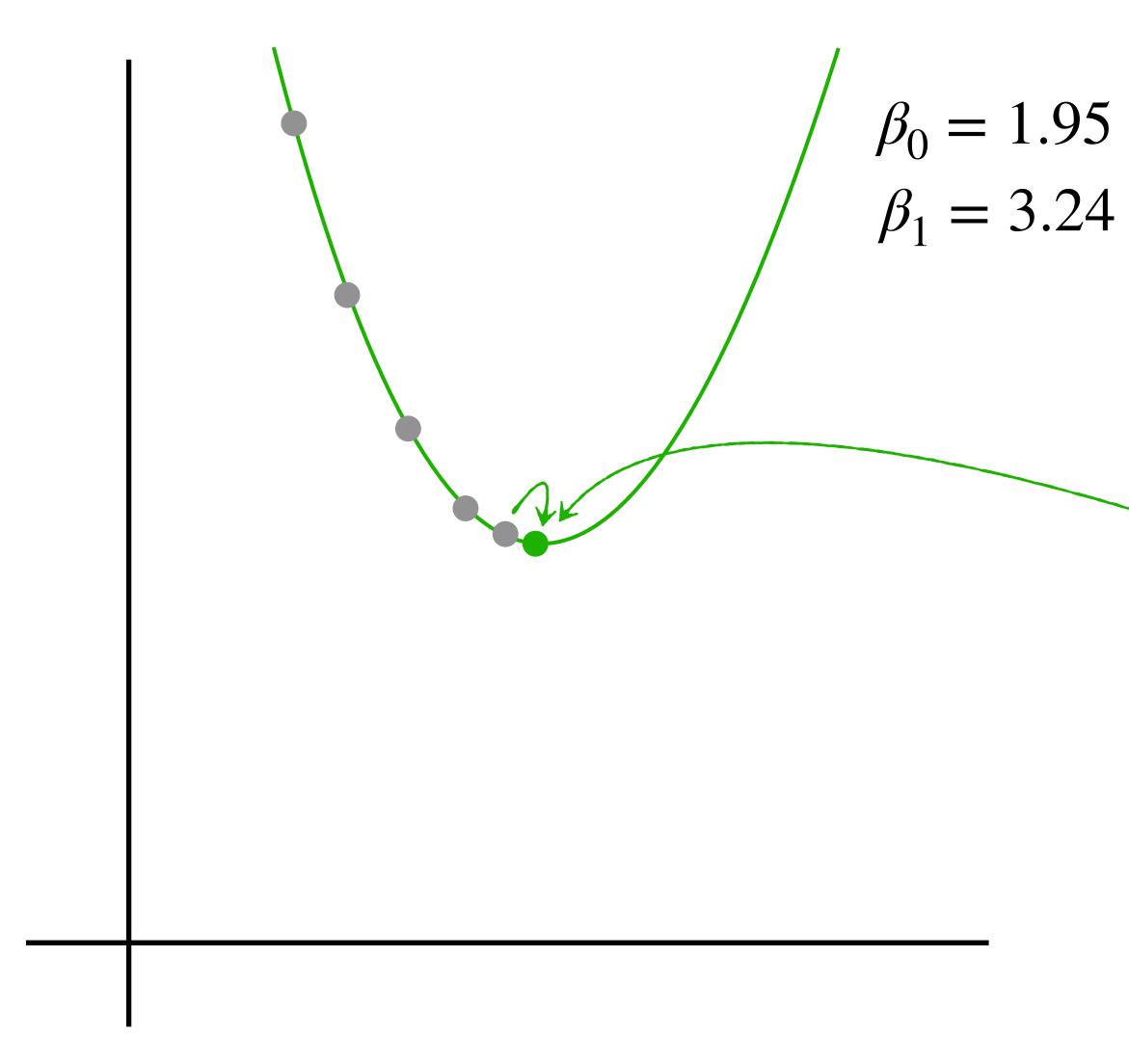
Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$step_size_{\beta_0} = \frac{\partial}{\beta_0} MSE \times learning_rate$$
$$step_size_{\beta_1} = \frac{\partial}{\beta_1} MSE \times learning_rate$$

learning_rate is a small value that determines how the algorithm adjusts the parameters on each iteration. Too large and it will take big steps and fail to converge. Too small and it will take many small steps and take too long to converge.

e



Gradient Descent

Gradient Descent: Basic Concept

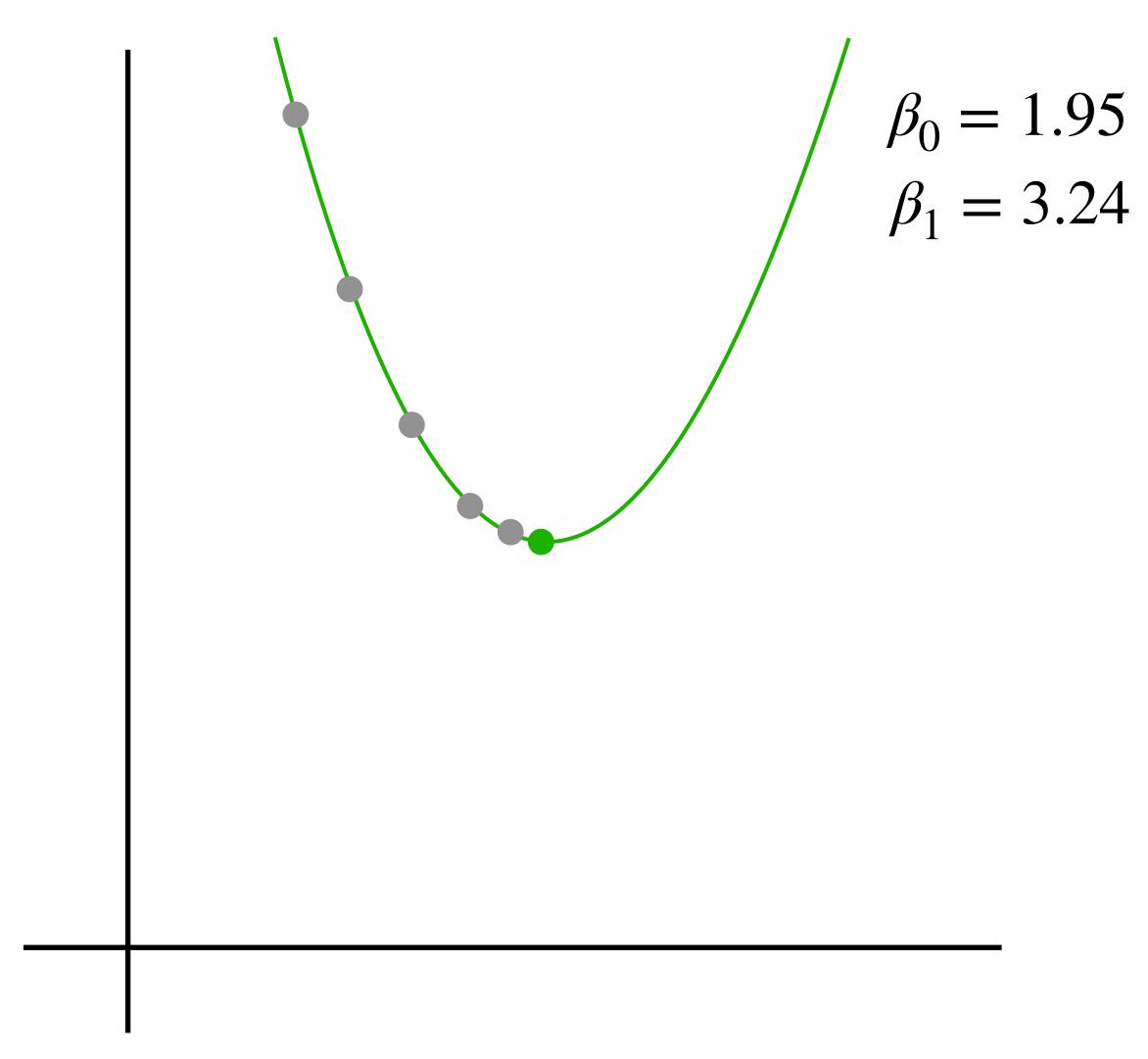
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point **Step 3:** Calculate a step size that is proportional to the slope

> **Step 4: Calculate new values for** β_0 **and** β_1 **by** subtracting the step size

$$\beta_0 = \beta_0 - step_size_{\beta_0}$$

$$\beta_1 = \beta_1 - step_size_{\beta_1}$$

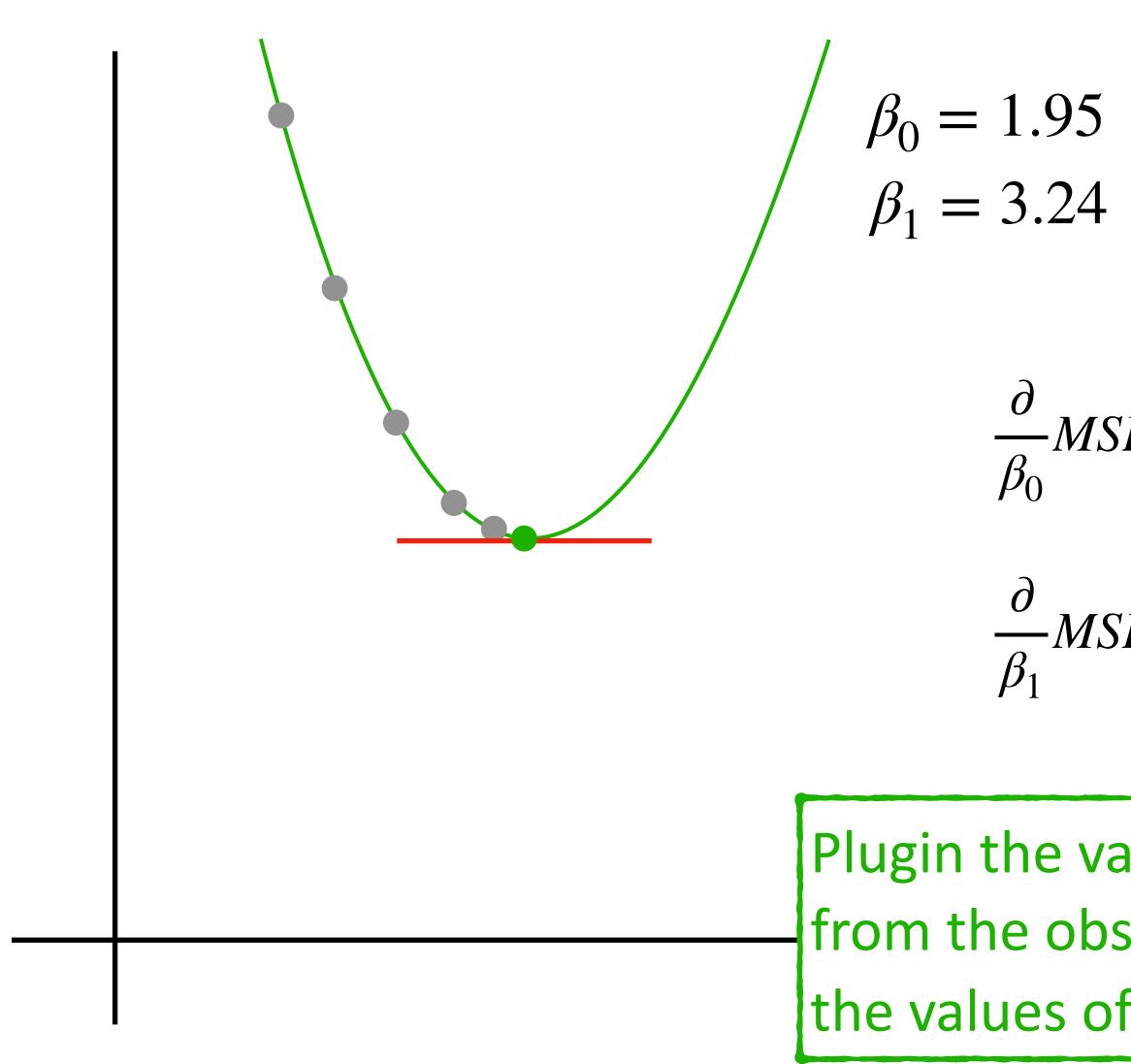


Gradient Descent

Gradient Descent: Basic Concept

- **Step 1:** Start with random values for β_0 and β_1
- **Step 2:** Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point **Step 3:** Calculate a step size that is proportional to the slope
 - **Step 4:** Calculate new values for β_0 and β_1 by subtracting the step size

Step 5: Go to step 2 and repeat



Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Mean Squared Error (MSE)

Gradient Descent

Gradient Descent: Basic Concept

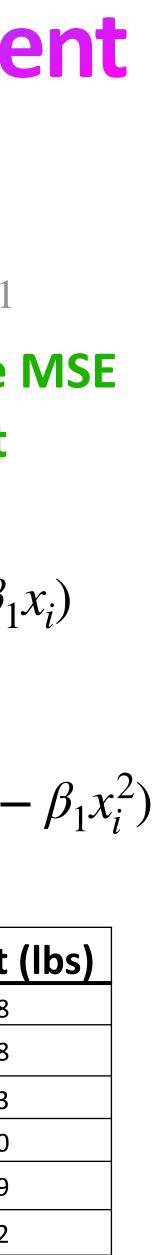
- **Step 1:** Start with random values for β_0 and β_1
- **Step 2: Compute the partial derivative of the MSE** w.r.t β_0 and β_1 - this is the slope at that point

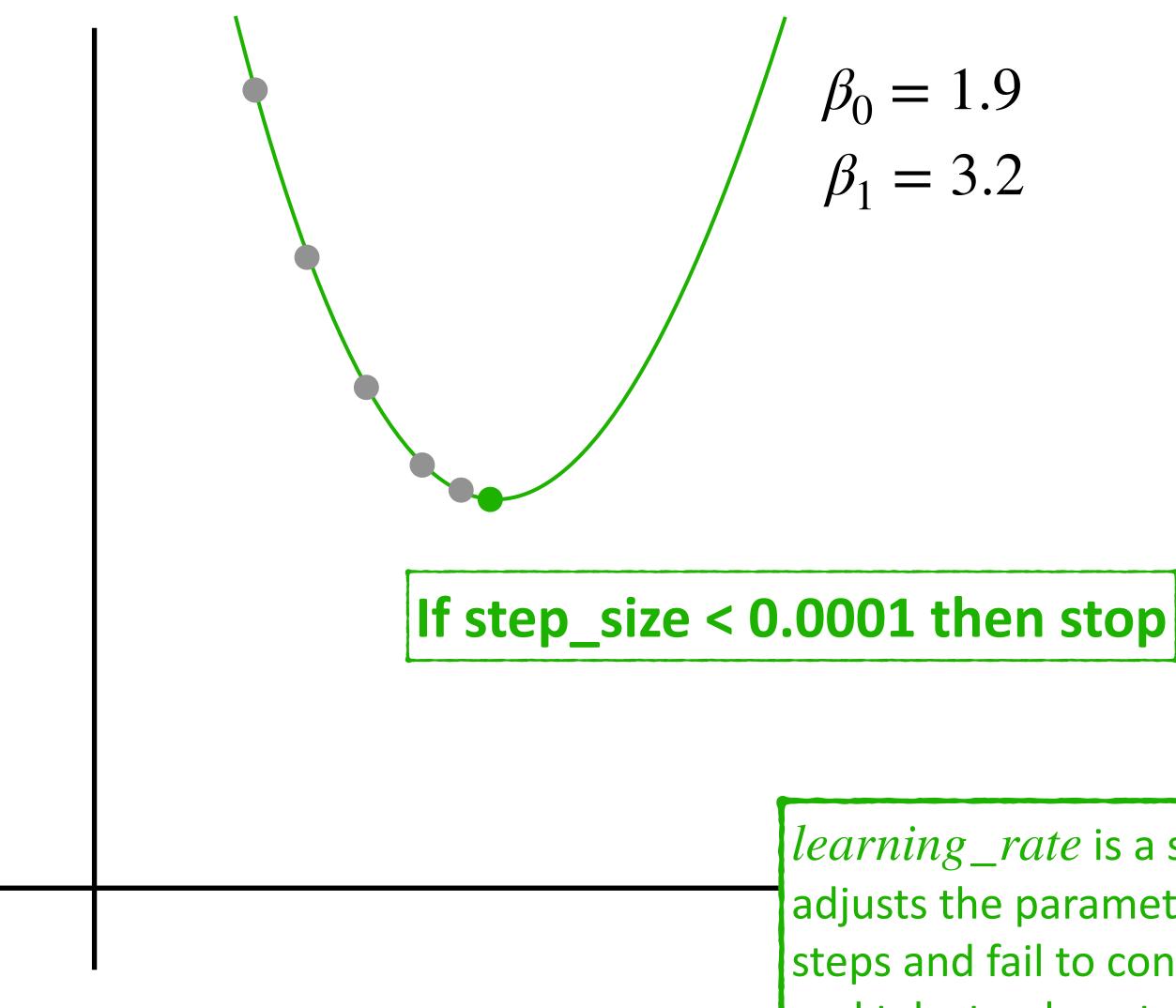
$$ASE = \frac{\partial}{\partial\beta_0} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

$$ASE = \frac{\partial}{\partial\beta_1} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^n (x_i y_i - \beta_0 x_i - \beta_0 x_i)^2$$

$$Values \text{ of } x_i \text{ and } y_i$$
bservations and of β_0 and β_1

$$Values = \frac{\partial}{\partial\beta_1} \frac{1}{2n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -\frac{1}{n} \sum_{i=0}^n (x_i y_i - \beta_0 x_i - \beta_0 x_i)^2$$





Mean Squared Error (MSE)

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$step_size_{\beta_0} = \frac{\partial}{\beta_0} MSE \times learning_rate$$

$$step_size_{\beta_1} = \frac{\partial}{\beta_1} MSE \times learning_rate$$

learning_rate is a small value that determines how the algorithm adjusts the parameters on each iteration. Too large and it will take big steps and fail to converge. Too small and it will take many small steps and take too long to converge.

Simple Linear Regression

A statistical technique of making predictions from data. The tutorial introduces a linear model in two dimensions and uses that model to predict the value of one dependent variable given one independent variable.

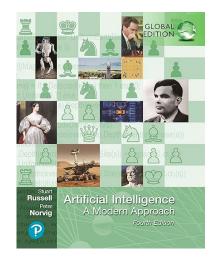
Multiple Regression

Multiple regression extends the two dimensional linear model introduced in Simple Linear Regression to k + 1 dimensions with one dependent variable, k independent variables and k+1 parameters.

Gradient Descent for Multiple Regression

Gradient Descent algorithm for multiple regression and how it can be used to optimize k + 1 parameters for a Linear model in multiple dimensions.

Recommended Textbooks



<u>Artificial Intelligence: A Modern Approach</u>

by Peter Norvig, Stuart Russell

Related Tutorials & Textbooks

For a complete list of tutorials see: https://arrsingh.com/ai-tutorials

