Multiple Regression General Matrix form for Multiple Regression

Rahul Singh rsingh@arrsingh.com

re-gres-sion

noun

A statistical method used to predict the relationship between a dependent variable and one or more independent variables

re-gres-sion

noun

A statistical method used to predict the relationship between a dependent variable and one or more independent variables

in other words...

if we see some data (x, y) we can use linear regression to predict the y values for other values of x

y is the dependent variable

re-gres-sion

noun

A statistical method used to predict the relationship between a dependent variable and one or more independent variables

y = f(x)

in other words...

if we see some data (x, y) we can use linear regression to predict the y values for other values of x

y is the dependent variable

re-gres-sion

noun

A statistical method used to predict the relationship between a dependent variable and one or more independent variables

y = f(x)

in other words...

if we see some data (x, y) we can use linear regression to predict the y values for other values of x

x is the independent variable

y is the dependent variable

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

 β_0 Is the Y intercept

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

 β_0 Is the Y intercept

 β_1 Is the slope of the line

$$\beta_1 = \frac{\Delta \hat{y}}{\Delta \hat{x}} = \frac{(\hat{y}_2 - \hat{y}_1)}{(\hat{x}_2 - \hat{x}_1)}$$

$$\Delta \hat{y}$$

Eg: Predict Weight (y) given Height (x)

Eg: Predict Price of a house (y) given Square Footage (x)

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

For each point calculate the squared distance to the line. Divide that by the number of data points.

$$(y_0 - \hat{y_0})^2 + (y_1 - \hat{y_1})^2 + (y_2 - \hat{y_2})^2$$

$$+ (y_3 - \hat{y_3})^2 + (y_4 - \hat{y_4})^2 + (y_5 - \hat{y_5})^2$$

$$n$$

This is the Mean Squared Error (MSE)

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

For each point calculate the squared distance to the line. Divide that by the number of data points.

$$(y_0 - \hat{y}_0)^2 + (y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2$$

$$+ (y_3 - \hat{y}_3)^2 + (y_4 - \hat{y}_4)^2 + (y_5 - \hat{y}_5)^2$$

$$n$$

This is the Mean Squared Error (MSE)

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

values of eta_0 and eta_1

values of β_0 and β_1

values of β_0 and β_1

values of β_0 and β_1

Simple Linear Regression

MSE is minimized when the first derivative w.r.t eta_0 and eta_1 equals 0 See Tutorial on Differential Calculus

The Mean Squared Error (MSE) is

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

Partial Derivatives w.r.t eta_0 and eta_1

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \quad \dots \quad eq(1)$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \cdots eq(2)$$

Simple Linear Regression

MSE is minimized when the first derivative w.r.t β_0 and β_1 equals 0 See Tutorial on Differential Calculus

The Mean Squared Error (MSE) is

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

Partial Derivatives w.r.t eta_0 and eta_1

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \quad \dots \quad eq(1)$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \quad \dots \quad eq(2)$$

Solving both equations for β_0 and β_1 we get...

Simple Linear Regression

MSE is minimized when the first derivative w.r.t β_0 and β_1 equals 0 See Tutorial on Differential Calculus

The Mean Squared Error (MSE) is

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

Partial Derivatives w.r.t eta_0 and eta_1

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \quad \dots \quad eq(1)$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \quad \dots \quad eq(2)$$

Simple Linear Regression

$$\beta_0 = \frac{\sum_{i=0}^n y_i - \beta_1 \sum_{i=0}^n x_i}{n}$$

$$\beta_1 = \frac{n \sum_{i=0}^n x_i y_i - \sum_{i=0}^n x_i \sum_{i=0}^n y_i}{n \sum_{i=0}^n x_i^2 - \left(\sum_{i=0}^n x_i\right)^2}$$

This is known as the **Closed Form Solution** for Simple Linear Regression

For the details on how the two equations are solved see Proof of the Closed Form Solution

The Mean Squared Error (MSE) is

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

Partial Derivatives w.r.t eta_0 and eta_1

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \quad \dots \quad eq(1)$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \quad \dots \quad eq(2)$$

Solving both equations for β_0 and β_1 we get...

Simple Linear Regression

$$\beta_0 = \frac{\sum_{i=0}^n y_i - \beta_1 \sum_{i=0}^n x_i}{n}$$

$$\beta_1 = \frac{n \sum_{i=0}^n x_i y_i - \sum_{i=0}^n x_i \sum_{i=0}^n y_i}{n \sum_{i=0}^n x_i^2 - \left(\sum_{i=0}^n x_i\right)^2}$$

This is known as the **Closed Form Solution** for Simple Linear Regression

For the details on how the two equations are solved see Proof of the Closed Form Solution

1 independent variable

Simple Linear Regression

Eg: Predict Weight (y) of a person given Height (x)

Simple Linear Regression

Eg: Predict Price of a house (y) given Square Footage (x)

Price (dollars)

2 Parameters - β_0 and β_1

Simple Linear Regression

$$\hat{y} = \beta_0 + \beta_1 \hat{x}$$

Eg: Predict Price of a house (y) given Square Footage (x)

2 Parameters - β_0 and β_1

Goal: Find the values of β_0 and β_1 that minimizes the Mean Squared Error (MSE)

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

Simple Linear Regression

$$\hat{y} = \beta_0 + \beta_1 \hat{x}$$

Eg: Predict Price of a house (y)given Square Footage (x)

2 Parameters - β_0 and β_1

Goal: Find the values of β_0 and β_1 that minimizes the Mean Squared Error (MSE)

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

Simple Linear Regression

$$\hat{y} = \beta_0 + \beta_1 \hat{x}$$

Eg: Predict Price of a house (y)given Square Footage (x)

2 Parameters - β_0 and β_1

Goal: Find the values of β_0 and β_1 that minimizes the Mean Squared Error (MSE)

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

MSE is minimized when the first derivative w.r.t β_0 and β_1 equals 0 See Tutorial on Differential Calculus ... corresponding to this line ... and that's the line of best fit

1 independent variable

$$\beta_0 = \frac{\sum_{i=0}^n y_i - \beta_1 \sum_{i=0}^n x_i}{n}$$

$$\beta_1 = \frac{n \sum_{i=0}^{n} x_i y_i - \sum_{i=0}^{n} x_i \sum_{i=0}^{n} y_i}{n \sum_{i=0}^{n} x_i^2 - \left(\sum_{i=0}^{n} x_i\right)^2}$$

Simple Linear Regression

We solve for two Parameters - β_0 and β_1 - by solving two equations...

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \quad \dots \quad eq(1)$$

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \quad \dots \quad eq(1)$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \quad \dots \quad eq(2)$$

MSE is minimized when the first derivative w.r.t β_0 and β_1 equals 0 See Tutorial on Differential Calculus

Simple Linear Regression

$$\hat{y} = \beta_0 + \beta_1 \hat{x}$$

Simple Linear Regression

- 1 dependent variable y
- 1 independent variable *x*
- 2 Parameters β_0 and β_1
- We solve 2 equations to find the values of β_0 and β_1

Predict Price (y) of a house given Square Footage (x)

What if we wanted to predict price of a house, given Square Footage and Number of bedrooms?

 $\hat{x_1}$ represents the square footage \hat{x}_2 represents the number of bedrooms

What if we wanted to predict price of a house, given Square Footage and Number of bedrooms?

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2$$
 1 dependent variable \hat{y} 2 independent variables We sol

 $\hat{x_1}$ represents the square footage

 \hat{x}_2 represents the number of bedrooms

Goal: Find the values of β_0 , β_1 and β_2 that minimizes the Sum of Squared Residuals (SSR)

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

MSE is minimized when the first derivative of the SSR w.r.t β_0 , β_1 and β_2 equals 0 See Tutorial on Differential Calculus

We solve for three Parameters - β_0 , β_1 and β_2 - by solving three equations...

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i})^2 = 0$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 \hat{x_1}_i - \beta_2 \hat{x_2}_i)^2 = 0$$

$$\frac{\partial}{\partial \beta_2} \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i})^2 = 0$$

Multiple Regression

2 independent variables

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2$$

 $\hat{x_1}$ represents the square footage \hat{x}_2 represents the number of bedrooms

Goal: Find the values of β_0 , β_1 and β_2 that minimizes the Sum of Squared Residuals (SSR)

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i})^2$$

MSE is minimized when the first derivative of the SSR w.r.t β_0 , β_1 and β_2 equals 0 See Tutorial on Differential Calculus

We solve for three Parameters - β_0 , β_1 and β_2 - by solving three equations...

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 \hat{x_1}_i - \beta_2 \hat{x_2}_i)^2 = 0$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 \hat{x_1}_i - \beta_2 \hat{x_2}_i)^2 = 0$$

$$\frac{\partial}{\partial \beta_2} \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i})^2 = 0$$

Lets generalize this...

A linear model with...

1 dependent variable y

Multiple Regression

2 independent variables

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2$$

Has 3 parameters

And a cost function...

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x_{1i}} - \beta_2 \hat{x_{2i}})^2$$

That can be minimized by solving 3 equations

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i})^2 = 0$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i})^2 = 0$$

$$\frac{\partial}{\partial \beta_2} \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i})^2 = 0$$

A linear model with...

1 dependent variable y

Multiple Regression

3 independent variables

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2 + \beta_3 \hat{x}_3$$

Has 4 parameters

And a cost function...

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i})^2$$

That can be minimized by solving 4 equations

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i})^2 = 0$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i})^2 = 0$$

$$\frac{\partial}{\partial \beta_2} \frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i})^2 = 0$$

$$\frac{\partial}{\partial \beta_3} \frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i})^2 = 0$$

A linear model with...

1 dependent variable y

Multiple Regression

k independent variables $x_1 \dots x_k$

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2 + \beta_3 \hat{x}_3 + \dots + \beta_k \hat{x}_k$$

And a cost function...

$$\frac{1}{n}\sum_{i=0}^{n}(y_i-\beta_0-\beta_1\hat{x_1}_i-\beta_2\hat{x_2}_i-\beta_3\hat{x_3}_i-\ldots-\beta_k\hat{x_k}_i)^2$$
 That can be minimized by

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i} - \dots - \beta_k \hat{x}_{ki})^2 = 0$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i} - \dots - \beta_k \hat{x}_{ki})^2 = 0$$

$$\frac{\partial}{\partial \beta_2} \frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i} - \dots - \beta_k \hat{x}_{ki})^2 = 0$$

$$\frac{\partial}{\partial \beta_n} \frac{1}{n} \sum_{i=0}^n (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i} - \dots - \beta_k \hat{x}_{ki})^2 = 0$$

solving k+1 equations

Lets use a Matrix

Simple Linear Regression

Eg: Predict Price of a house (y) given Square Footage (x)

Price (dollars)

2 Parameters - β_0 and β_1

Simple Linear Regression

Line of Best Fit...

Simple Linear Regression

...can be represented as a matrix

$$\hat{y} = \beta_0 + \beta_1 \hat{x}$$

$$\hat{y}_0 = 1 \times \beta_0 + \hat{x}_0 \times \beta_1$$

$$\hat{y}_1 = 1 \times \beta_0 + \hat{x}_1 \times \beta_1$$

$$\hat{y}_2 = 1 \times \beta_0 + \hat{x}_2 \times \beta_1$$

$$\hat{y}_3 = 1 \times \beta_0 + \hat{x}_3 \times \beta_1$$

$$\hat{y}_n = 1 \times \beta_0 + \hat{x}_n \times \beta_1$$

$$\begin{bmatrix} \hat{y}_0 \\ \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \begin{bmatrix} 1 & \hat{x}_0 \\ 1 & \hat{x}_1 \\ 1 & \hat{x}_2 \\ 1 & \hat{x}_3 \\ \vdots & \vdots \\ 1 & \hat{x}_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

• 1 dependent variable
$$\hat{y}$$

- 1 independent variables \hat{x}
- 2 parameters eta_0 and eta_1

Linear Model in 2 Dimensions

Simple Linear Regression

$$\hat{y} = \beta_0 + \beta_1 \hat{x}$$

$$\hat{y}_0 = 1 \times \beta_0 + \hat{x}_0 \times \beta_1$$

$$\hat{y}_1 = 1 \times \beta_0 + \hat{x}_1 \times \beta_1$$

$$\hat{y}_2 = 1 \times \beta_0 + \hat{x}_2 \times \beta_1$$

$$\hat{y}_3 = 1 \times \beta_0 + \hat{x}_3 \times \beta_1$$

•

$$\hat{y}_n = 1 \times \beta_0 + \hat{x}_n \times \beta_1$$

$$egin{bmatrix} \hat{y}_0 \ \hat{y}_1 \ \hat{y}_2 \ \hat{y}_3 \ \vdots \ \hat{y}_n \end{bmatrix} = egin{bmatrix} 1 & \hat{x}_0 \ 1 & \hat{x}_1 \ 1 & \hat{x}_2 \ 1 & \hat{x}_3 \ \vdots \ \ddots & \ddots \ 1 & \hat{x}_n \end{bmatrix} egin{bmatrix} eta_0 \ \hat{x}_1 \ \hat{x}_2 \ 1 & \hat{x}_3 \ \vdots \ \hat{x}_n \end{bmatrix}$$

• 1 dependent variable
$$\hat{y}$$

- 1 independent variables \hat{x}
- 2 parameters β_0 and β_1

Linear Model in 3 **Dimensions**

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2$$

$$\hat{y}_0 = 1 \times \beta_0 + \hat{x}_{10} \times \beta_1 + \hat{x}_{20} \times \beta_2$$

$$\hat{y}_1 = 1 \times \beta_0 + \hat{x}_{11} \times \beta_1 + \hat{x}_{21} \times \beta_1$$

$$\hat{y}_2 = 1 \times \beta_0 + \hat{x}_{12} \times \beta_1 + \hat{x}_{22} \times \beta_2$$

$$\hat{y}_3 = 1 \times \beta_0 + \hat{x}_{13} \times \beta_1 + \hat{x}_{23} \times \beta_2$$

$$\hat{y}_n = 1 \times \beta_0 + \hat{x}_{1n} \times \beta_1 + \hat{x}_{2n} \times \beta_2$$

$$\begin{bmatrix} \hat{y}_0 \\ \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \begin{bmatrix} 1 & \hat{x}_{10} & \hat{x}_{20} \\ 1 & \hat{x}_{11} & \hat{x}_{21} \\ 1 & \hat{x}_{12} & \hat{x}_{22} \\ 1 & \hat{x}_{13} & \hat{x}_{23} \\ \vdots & \vdots & \vdots \\ 1 & \hat{x}_{1n} & \hat{x}_{2n} \end{bmatrix}$$

$$\begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

- 1 dependent variable \hat{y}
- 2 independent variables \hat{x}_1 and \hat{x}_2 3 parameters β_0 , β_1 and β_2

Linear Model in 4 **Dimensions**

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2 + \beta_3 \hat{x}_3$$

$$\hat{y}_n = 1 \times \beta_0 + \hat{x}_{1n} \times \beta_1 + \hat{x}_{2n} \times \beta_2 + \hat{x}_{3n} \times \beta_3$$

$$\begin{vmatrix} \hat{y}_0 \\ \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \\ \vdots \\ \hat{y}_n \end{vmatrix} = \begin{vmatrix} 1 & \hat{x}_{10} & \hat{x}_{20} & \hat{x}_{30} \\ 1 & \hat{x}_{11} & \hat{x}_{21} & \hat{x}_{21} \\ 1 & \hat{x}_{12} & \hat{x}_{22} & \hat{x}_{22} \\ 1 & \hat{x}_{13} & \hat{x}_{23} & \hat{x}_{23} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \hat{x}_{1n} & \hat{x}_{2n} & \hat{x}_{3n} \end{vmatrix}$$

$$\begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}$$

- 1 dependent variable \hat{y}
- 3 independent variables \hat{x}_1 , \hat{x}_2 and \hat{x}_3 4 parameters β_0 , β_1 , β_2 and β_3

Linear Model in k+1 Dimensions

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2 + \beta_3 \hat{x}_3 + \dots + \beta_k \hat{x}_k$$

$$\hat{y}_n = 1 \times \beta_0 + \hat{x}_{1n} \times \beta_1 + \hat{x}_{2n} \times \beta_2 + \hat{x}_{3n} \times \beta_3 + \dots + \hat{x}_{kn} \times \beta_k$$

$$\begin{vmatrix} \hat{y}_0 \\ \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \\ \vdots \\ \hat{y}_n \end{vmatrix} = \begin{vmatrix} 1 & \hat{x}_{10} & \hat{x}_{20} & \hat{x}_{30} & \dots & \hat{x}_{k0} \\ 1 & \hat{x}_{11} & \hat{x}_{21} & \hat{x}_{21} & \dots & \hat{x}_{k1} \\ 1 & \hat{x}_{12} & \hat{x}_{22} & \hat{x}_{22} & \dots & \hat{x}_{k2} \\ 1 & \hat{x}_{13} & \hat{x}_{23} & \hat{x}_{23} & \dots & \hat{x}_{k3} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \hat{x}_{1n} & \hat{x}_{2n} & \hat{x}_{3n} & \dots & \vdots & \hat{x}_{kn} \end{vmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \vdots \\ \beta_k \end{bmatrix}$$

- 1 dependent variable \hat{y}
- k independent variables \hat{x}_1 , \hat{x}_2 , \hat{x}_3 ... \hat{x}_k k+1 parameters β_0 , β_1 , β_2 , β_3 ... β_k

Linear Model in k+1 Dimensions

$$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2 + \beta_3 \hat{x}_3 + \dots + \beta_k \hat{x}_k$$

$$\hat{Y} = \hat{X} eta$$
 \hat{Y} and \hat{X} are matrices

- 1 dependent variable \hat{y}
- k independent variables \hat{x}_1 , \hat{x}_2 , \hat{x}_3 ... \hat{x}_k k+1 parameters β_0 , β_1 , β_2 , β_3 ... β_k

$$\hat{y} = \beta_0 + \beta_1 \hat{x}$$

Given a matrix (Y)of observations

$$\hat{Y} = \hat{X}\beta$$

The Mean Squared Error (MSE)

$$\frac{1}{n} \| Y - \hat{Y} \|^2$$

The two parallel vertical lines mean that this is the Euclidean Norm of the matrix

See Tutorial on Vectors & Matrices

$$\hat{y} = \beta_0 + \beta_1 \hat{x}$$

$$\hat{Y} = \hat{X}\beta$$

Given a matrix (Y)of observations

Substituting $\hat{Y} = \hat{X}\beta$

The Mean Squared Error (MSE)

$$\frac{1}{n} \| Y - \hat{Y} \|^2 = \frac{1}{n} \| Y - \hat{X}\beta \|^2$$

$$\hat{y} = \beta_0 + \beta_1 \hat{x}$$

Given a matrix (Y)of observations

$$\hat{Y} = \hat{X}\beta$$

The Mean Squared Error (MSE)

$$\frac{1}{n} \| Y - \hat{Y} \|^2 = \frac{1}{n} \| Y - \hat{X}\beta \|^2 = \frac{1}{n} \| Y - X\beta \|^2$$

$$\hat{Y} = \hat{X}\beta$$

The Mean Squared Error (MSE):

$$\frac{1}{n} \parallel Y - X\beta \parallel^2$$

The Problem Statement:

Multiple Regression: Compute the matrix etasuch that the Mean Squared Error (MSE) is minimized.

The Problem Statement:

Multiple Regression

Multiple Regression: Compute the matrix etasuch that the Mean Squared Error (MSE) is minimized.

$$\frac{1}{n} \| Y - X\beta \|^2$$

$$\frac{\partial}{\partial \beta} \frac{1}{n} \| Y - X\beta \|^2 = 0$$

$$\beta = (X^T X)^{-1} X^T Y$$

This is the cost function (aka loss function) that we must minimize.

We take the partial derivate and set it = 0

Solving for β

For the details of the derivation see the tutorial on Derivation of the Matrix Form for Multiple Regression

The Problem Statement:

Multiple Regression

Multiple Regression: Compute the matrix etasuch that the Mean Squared Error (MSE) is minimized.

Solution:

$$\beta = (X^T X)^{-1} X^T Y$$

This is the **Closed form solution** for **Multiple Regression**. However this requires inverting a matrix which is not always possible.

For more details on the reasons why see the tutorial on Vectors & Matrices

Related Tutorials & Textbooks

Simple Linear Regression

A statistical technique of making predictions from data. The tutorial introduces a linear model in two dimensions and uses that model to predict the value of one dependent variable given one independent variable.

Multiple Regression: Deriving the Matrix Form

A proof of the closed form matrix representation of the multiple regression model. This closed form represents a linear model with k + 1 parameters and solves for the matrix β . This requires a matrix inverse that is not always possible.

Gradient Descent for Multiple Regression

Gradient Descent algorithm for multiple regression and how it can be used to optimize k + 1 parameters for a Linear model in multiple dimensions.

Recommended Textbooks

Introduction to Linear Regression Analysis

by Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining

For a complete list of tutorials see:

https://arrsingh.com/ai-tutorials