Simple Linear Regression Fundamentals

Rahul Singh rsingh@arrsingh.com

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

noun

A statistical method used to predict the relationship between a dependent variable and one or more independent variables

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

What is Simple Linear Regression

noun

A statistical method used to predict the relationship between a dependent variable and one or more independent variables

in other words...

if we see some data (x, y) we can use linear regression to predict the y values for other values of x

What is Simple Linear Regression

noun

A statistical method used to predict the relationship between a dependent variable and one or more independent variables

y = f(x)

if we see some data (x, y) we can use linear regression to predict the y values for other values of x

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

What is Simple Linear Regression

in other words...

noun

A statistical method used to predict the relationship between a dependent variable and one or more independent variables

What is Simple Linear Regression

in other words...

if we see some data (x, y) we can use linear regression to predict the y values for other values of x

x is the independent variable

noun

A statistical method used to predict the relationship between a dependent variable and one or more independent variables

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

What is Simple Linear Regression

in other words...

if we see some data (x, y) we can use linear regression to predict the y values for other values of x

x is the independent variable

is the dependent variable

Lets take a simple example...

Copyright (c) 2025, <u>Rahul Singh</u>, licensed under CC BY-NC-SA 4.0 (<u>https://creativecommons.org/licenses/by-nc-sa/4.0/</u>)

Simple Linear Regression

A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192

Simple Linear Regression

A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192

Question: Can we **predict** how far the car will have traveled in 4.7 hours?

A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192

Question: Can we **predict** how far the car will have traveled in 4.7 hours?

Simple Linear Regression

Lets begin by plotting the data

Y Axis = Distance Travelled (Miles) X Axis = Time (Hours)

Time (Hours)

A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192

Question: Can we **predict** how far the car will have traveled in 4.7 hours?

A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192

Question: Can we **predict** how far the car will have traveled in 4.7 hours?

A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192

Question: Can we **predict** how far the car will have traveled in 4.7 hours?

A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192

Question: Can we **predict** how far the car will have traveled in 4.7 hours?

A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192

Question: Can we **predict** how far the car will have traveled in 4.7 hours?

A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192

Question: Can we **predict** how far the car will have traveled in 4.7 hours?

A few things to note...

- All the data points line up perfectly
- The slope of the line (i.e. speed of the car) is easy to determine:

Simple Linear Regression

Slope at x = 0.3, y = 18

Time (Hours)	Distance Traveled (Miles)	Speed (mph)
0.3	18	18 / 0.3 = 60

Simple Linear Regression

Slope at x = 0.7, y = 42

Time (Hours)	Distance Traveled (Miles)	Speed (mph)
0.3	18	18 / 0.3 = 60
0.7	42	42 / 0.7 = 60

Simple Linear Regression

Slope at x = 1.3, y = 78

Time (Hours)	Distance Traveled (Miles)	Speed (mph)
0.3	18	18 / 0.3 = 60
0.7	42	42 / 0.7 = 60
1.3	78	78 / 1.3 = 60

Simple Linear Regression

Slope at x = 2.4, y = 144

Time (Hours)	Distance Traveled (Miles)	Speed (mph)
0.3	18	18 / 0.3 = 60
0.7	42	42 / 0.7 = 60
1.3	78	78 / 1.3 = 60
2.4	144	144 / 2.4 = 60

Slope at x = 3.2, y = 192

Time (Hours)	Distance Traveled (Miles)	Speed (mph)
0.3	18	18 / 0.3 = 60
0.7	42	42 / 0.7 = 60
1.3	78	78 / 1.3 = 60
2.4	144	144 / 2.4 = 60
3.2	192	192 / 3.2 = 60

Once we know the slope of the line...

slope = 60

• Once we know the slope of the line, we can plot it using the formula for a line $v = \beta x$

 $y = \beta x$

distance = *speed* × *time*

• Once we have a line then we can find the distance traveled at any point in time

$$y = 60 \times 4.7 = 282$$

In General...

- Given a set of data points (x, y) ...
- We plot a line that fits that data...
- Then we use the line to calculate the y values for any value of x

This was a simple (contrived?) example...

- All the data points lined up perfectly
- The line fit the data perfectly
- We could have simply used the formula for the distance

distance = *speed* × *time*

Lets take a more realistic example...

Copyright (c) 2025, <u>Rahul Singh</u>, licensed under CC BY-NC-SA 4.0 (<u>https://creativecommons.org/licenses/by-nc-sa/4.0/</u>)

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Question: Can we **predict** the weight of a person that is 71 inches tall?

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Question: Can we **predict** the weight of a person that is 71 inches tall?

Simple Linear Regression

Lets begin by plotting the data

Y Axis = Weight (lbs) X Axis = Height (inches)

Height (inches)

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Question: Can we **predict** the weight of a person that is 71 inches tall?

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Question: Can we **predict** the weight of a person that is 71 inches tall?

Simple Linear Regression

Data is synthetic and not plotted to scale 19

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Question: Can we **predict** the weight of a person that is 71 inches tall?

Simple Linear Regression

Data is synthetic and not plotted to scale 20

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Question: Can we **predict** the weight of a person that is 71 inches tall?

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Question: Can we **predict** the weight of a person that is 71 inches tall?

Simple Linear Regression

Data is synthetic and not plotted to scale 22

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Question: Can we **predict** the weight of a person that is 71 inches tall?

Simple Linear Regression

Height (inches)

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Question: Can we **predict** the weight of a person that is 71 inches tall?

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Question: Can we **predict** the weight of a person that is 71 inches tall?

Simple Linear Regressi

Can we draw a line that passes through all these points?

Height (inches)

Data is synthetic and not plotted to scale 25

	_	

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Question: Can we **predict** the weight of a person that is 71 inches tall?

Simple Linear Regressi

Can we draw a line that passes through all these points?

We can't because its not a perfect linear relationship

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Weight (lbs)

Question: So what's the line that **best** fits the data?

Simple Linear Regression

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Question: So what's the line that **best** fits the data?

Simple Linear Regression

Height (inches)

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Question: So what's the line that **best** fits the data?

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Simple Linear Regression

Or does this line fit the data the best?

Height (inches)

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Weight (lbs)

Question: So what's the line that **best** fits the data?

Simple Linear Regression

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Weight (lbs)

Question: So what's the line that **best** fits the data?

Simple Linear Regression

Height (inches)

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Weight (Ibs)

Question: So what's the line that **best** fits the data?

Simple Linear Regression

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Weight (lbs)

Question: So what's the line that **best** fits the data?

Simple Linear Regression

Height (inches)

We observe the heights and weights of 6 people

Simple Linear Regression

Problem Statement: Find the line that best fits the given data.

Height (inches)

We observe the heights and weights of 6 people

Problem Statement: Given a set of data points in \mathbb{R}^2 , (x_0, y_0) , (x_1, y_1) , (x_2, y_2) ... (x_n, y_n) , find the line that best fits the data

Simple Linear Regression

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Simple Linear Regression

β_0 Is the Y intercept

Simple Linear Regression

 β_0 is the Y intercept β_1 Is the slope of the line

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Simple Linear Regression

 β_0 Is the Y intercept β_1 Is the slope of the line

Problem Statement: Find the values of β_0 and β_1 for the line that best fits the given data.

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Simple Linear Regression

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Simple Linear Regression

Height (inches)

Simple Linear Regression

Height (inches)

$$(y_0 - \hat{y_0})$$

Simple Linear Regression

Height (inches)

$$(y_0 - \hat{y}_0) + (y_1 - \hat{y}_1)$$

Simple Linear Regression

$$(y_0 - \hat{y}_0) + (y_1 - \hat{y}_1) + (y_2 - \hat{y}_2)$$

Simple Linear Regression

Height (inches)

$$(y_0 - \hat{y}_0) + (y_1 - \hat{y}_1) + (y_2 - \hat{y}_2) + (y_3 - \hat{y}_3) + (y_4 - \hat{y}_4) + (y_5 - \hat{y}_5)$$

Simple Linear Regression

$$(y_0 - \hat{y}_0) + (y_1 - \hat{y}_1) + (y_2 - \hat{y}_2) + (y_3 - \hat{y}_3) + (y_4 - \hat{y}_4) + (y_5 - \hat{y}_5)$$

But there's a small problem...

Weight (lbs)

Simple Linear Regression

$$(y_0 - \hat{y}_0) + (y_1 - \hat{y}_1) + (y_2 - \hat{y}_2) + (y_3 - \hat{y}_3) + (y_4 - \hat{y}_4) + (y_5 - \hat{y}_5)$$

But there's a small problem...

These values are positive

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Simple Linear Regression

$$(y_0 - \hat{y}_0) + (y_1 - \hat{y}_1) + (y_2 - \hat{y}_2) + (y_3 - \hat{y}_3) + (y_4 - \hat{y}_4) + (y_5 - \hat{y}_5)$$

But there's a small problem...

These values are positive

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Simple Linear Regression

$$(y_0 - \hat{y}_0) + (y_1 - \hat{y}_1) + (y_2 - \hat{y}_2) + (y_3 - \hat{y}_3) + (y_4 - \hat{y}_4) + (y_5 - \hat{y}_5)$$

But there's a small problem...

Simple Linear Regression

$$(y_0 - \hat{y}_0) + (y_1 - \hat{y}_1) + (y_2 - \hat{y}_2) + (y_3 - \hat{y}_3) + (y_4 - \hat{y}_4) + (y_5 - \hat{y}_5)$$

But there's a small problem...

Simple Linear Regression

Height (inches)

$$(y_0 - \hat{y}_0) + (y_1 - \hat{y}_1) + (y_2 - \hat{y}_2) + (y_3 - \hat{y}_3) + (y_4 - \hat{y}_4) + (y_5 - \hat{y}_5)$$

... the positive and negative values will cancel each other out

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

These values are positive

Simple Linear Regression

Height (inches)

$$(y_0 - \hat{y}_0) + (y_1 - \hat{y}_1) + (y_2 - \hat{y}_2) + (y_3 - \hat{y}_3) + (y_4 - \hat{y}_4) + (y_5 - \hat{y}_5)$$

To fix that, we square each term

... the positive and negative values will cancel each other out

Weight (lbs)

Simple Linear Regression

Height (inches)

$$(y_0 - \hat{y}_0)^2 + (y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2$$

+ $(y_3 - \hat{y}_3)^2 + (y_4 - \hat{y}_4)^2 + (y_5 - \hat{y}_5)^2$
To fix that, we square each term

This is the sum of squared errors.

Simple Linear Regression

Sum of squared errors:

$$(y_0 - \hat{y}_0)^2 + (y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + (y_3 - \hat{y}_3)^2 + (y_4 - \hat{y}_4)^2 + (y_5 - \hat{y}_5)^2$$

Simple Linear Regression

Simple Linear Regression

This is the **Mean Square Error (MSE)**

 $\frac{1}{2} \sum (y_i - \hat{y}_i)^2$ $\sim \iota$ · · N i=0

Simple Linear Regression

 $(y_0 - \hat{y}_0)^2 + (y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2$ $+(y_3 - \hat{y}_3)^2 + (y_4 - \hat{y}_4)^2 + (y_5 - \hat{y}_5)^2$ N

This is the Mean Square Error (MSE)

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Simple Linear Regression

Height (inches)

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

Problem Statement: Given a set of data points in \mathbb{R}^2 , $(x_0, y_0), (x_1, y_1), (x_2, y_2) \dots (x_n, y_n),$ find the line that minimizes the

Mean Squared Error (MSE)

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Simple Linear Regression

Height (inches)

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$ This is the **Mean Squared Error (MSE)**

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

Simple Linear Regression

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$ This is the **Mean Squared Error (MSE)**

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

The Problem Statement:

Simple Linear Regression: Find the values of eta_0 and eta_1 such that the Mean Squared Error (MSE) is minimized.

Simple Linear Regression

Lets calculate the Mean Squared Error (MSE) for various values of β_0 and β_1

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

The Problem Statement:

Simple Linear Regression: Find the values of eta_0 and eta_1 such that the Mean Squared Error (MSE) is minimized.

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Simple Linear Regression

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

$$(62 - \beta_0 - \beta_1 138)^2 + (55 - \beta_0 - \beta_1 178)^2 + (44 - \beta_0 - \beta_1 123)^2$$

$$\frac{+(75 - \beta_0 - \beta_1 200)^2 + (65 - \beta_0 - \beta_1 229)^2 + (50 - \beta_0 - \beta_1 102)^2}{6}$$

The Problem Statement:

Simple Linear Regression: Find the values of eta_0 and eta_1 such that the Mean Squared Error (MSE) is minimized.

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$
For example: If $\beta_0 = 20$ and $\beta_1 = -1$
then MSE = 42817.17
$$(62 - \beta_0 - \beta_1 138)^2 + (55 - \beta_0 - \beta_1 178)^2 + (44 - \beta_0 - \beta_1 123)^2$$

$$\frac{+(75 - \beta_0 - \beta_1 200)^2 + (65 - \beta_0 - \beta_1 229)^2 + (50 - \beta_0 - \beta_1 102)^2}{6}$$

The Problem Statement:

Simple Linear Regression: Find the values of eta_0 and eta_1 such that the Mean Squared Error (MSE) is minimized.

various values of β_0 and β_1

53

various values of β_0 and β_1

Mean Squared Error (MSE)

53

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Lets calculate the Mean Squared Error (MSE) for **Simple Linear Regression** various values of β_0 and β_1 Error (MSE) Weight (lbs) **Mean Squared**

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Error (MSE)

Mean Squared

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Simple Linear Regression

Simple Linear Regression

Simple Linear Regression

Error (MSE)

Mean Squared

Simple Linear Regression

For these data points (observed heights & weights for 6 people) ...

Weight (lbs)

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Mean Squared Error (MSE)

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Mean Squared Error (MSE)

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Mean Squared Error (MSE)

Simple Linear Regression

MSE is minimized when the first derivative w.r.t β_0 and β_1 equals 0 See Tutorial on Differential Calculus

Simple Linear Regression

MSE is minimized when the first derivative w.r.t β_0 and β_1 equals 0 See Tutorial on Differential Calculus

Solving both equations for β_0 and β_1 we get...

Simple Linear Regression

MSE is minimized when the first derivative w.r.t β_0 and β_1 equals 0 See Tutorial on Differential Calculus

Solving both equations for β_0 and β_1 we get...

Simple Linear Regression

This is known as the **Closed Form Solution** for Simple Linear Regression

For the details on how the two equations are solved see Proof of the Closed Form Solution

Simple Linear Regression - Proof of the Closed Form Solution

A detailed proof of the the closed form solution of simple linear regression introduced above. This proof walks through solving two partial differential equations to compute the values of the two parameters.

Multiple Regression

Multiple regression extends the two dimensional linear model introduced in Simple Linear Regression to k + 1 dimensions with one dependent variable, k independent variables and k+1 parameters.

Gradient Descent for Simple Linear Regression

An introduction to the Gradient Descent algorithm and a deep dive on how it can be used to optimize the two parameters β_0 and β_1 for Simple Linear Regression.

Recommended Textbooks

Introduction to Linear Regression Analysis

by Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining

Related Tutorials & Textbooks

For a complete list of tutorials see: https://arrsingh.com/ai-tutorials

71