Vectors & Matrices Fundamentals

Rahul Singh rsingh@arrsingh.com

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Vector: A Vector (also known as a Euclidean Vector) is a geometric object with magnitude & direction

A Vector is represented by an ordered list of scalars - the endpoint of the vector in the cartesian coordinate system

$$v = (3,4)$$

Scalars & Vectors

A Vector in 2D Space

Vector: A Vector (also known as a Euclidean Vector) is a geometric object with magnitude & direction

A Vector is represented by an ordered list of scalars - the endpoint of the vector in the cartesian coordinate system

$$v = (3,4)$$

v is a vector in a Two Dimensional space

v is a vector in \mathbf{R}^2

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Scalars & Vectors

A Vector in 2D Space

Vector: A Vector (also known as a Euclidean Vector) is a geometric object with magnitude & direction

A Vector is represented by an ordered list of scalars - the endpoint of the vector in the cartesian coordinate system

$$v = (3, 4, 5)$$

v is a vector in a Three Dimensional space

v is a vector in \mathbf{R}^3

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Scalars & Vectors

Vector: A Vector (also known as a Euclidean Vector) is a geometric object with magnitude & direction

A Vector is represented by an ordered list of scalars - the endpoint of the vector in the cartesian coordinate system

$$v = (3, 4, 5, 6)$$

v is a vector in a Four Dimensional space

v is a vector in \mathbf{R}^4

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Scalars & Vectors

Vector: A Vector (also known as a Euclidean Vector) is a geometric object with magnitude & direction

A Vector is represented by an ordered list of scalars - the endpoint of the vector in the cartesian coordinate system

$$v = (x_1, x_2, x_3 \dots x_n)$$

A Vector in *n* dimensional Euclidean space

v is a vector in \mathbf{R}^n

Lets generalize this to *n* dimensions

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Scalars & Vectors

The Scalar components of a Vector can be laid out as rows or columns

Vector: A Vector (also known as a Euclidean Vector) is a geometric object with magnitude & direction

A Vector is represented by an ordered list of scalars - the endpoint of the vector in the cartesian coordinate system

$$v = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \cdots \\ x_n \end{bmatrix}$$

v is a **column** vector in \mathbf{R}^n *n* rows and 1 column

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Scalars & Vectors

 $v = \begin{bmatrix} x_1 & x_2 & x_3 & \dots & x_n \end{bmatrix}$

- v is a **row** vector in \mathbf{R}^n
 - 1 row and *n* columns

Vector: A Vector (also known as a Euclidean Vector) is a geometric object with magnitude & direction

A Vector is represented by an ordered list of scalars - the endpoint of the vector in the cartesian coordinate system

$$v = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{bmatrix}$$

$$v = \lceil y \rceil$$

v is a **column** vector in \mathbf{R}^n $(n \times 1)$ column vector

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Scalars & Vectors

 $v = \begin{bmatrix} x_1 & x_2 & x_3 & \dots & x_n \end{bmatrix}$

- v is a **row** vector in \mathbf{R}^n
 - $(1 \times n)$ row vector

Scalar: A scalar is a single numeric value (positive, negative or zero) **Vector:** A Vector (also known as a Euclidean Vector) is a geometric object with magnitude & direction

Transpose is an operation that swaps the rows and columns of a Vector

$$v = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{bmatrix}$$

v^T is a **row** vector in \mathbf{R}^n v is a **column** vector in \mathbf{R}^n $(n \times 1)$ column vector $(1 \times n)$ row vector

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Transpose a Vector

$v^T = \begin{bmatrix} x_1 & x_2 & x_3 & \dots & x_n \end{bmatrix}$

Scalar: A scalar is a single numeric value (positive, negative or zero) **Vector:** A Vector (also known as a Euclidean Vector) is a geometric object with magnitude & direction

Transpose is an operation that swaps the rows and columns of a Vector

$$v^{T} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \cdots \\ x_{n} \end{bmatrix} \qquad \qquad v =$$

v^T is a **column** vector in \mathbf{R}^n v is a **row** vector in \mathbf{R}^n $(n \times 1)$ column vector $(1 \times n)$ row vector

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Transpose a Vector

$= [x_1 \ x_2 \ x_3 \ \dots \ x_n]$

v is a vector in \mathbf{R}^2

v = (3,4)

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Scalars & Vectors

v is a vector in \mathbf{R}^2

v = (3,4)

Pythagoras Theorem can be used to calculate the length of the vector

$$m = \sqrt{x^2 + y^2} = \sqrt{3^2 + 4^2} =$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Scalars & Vectors

- v is a vector in \mathbf{R}^2
 - v = (3,4)

Magnitude is also known as the **Euclidean Norm of the Vector**

> Pythagoras Theorem can be used to calculate the length of the vector

$$m = \sqrt{x^2 + y^2} = \sqrt{3^2 + 4^2} =$$

Scalars & Vectors

- v is a vector in \mathbf{R}^2
 - v = (3,4)

Magnitude is also known as the **Euclidean Norm of the Vector**

$$||v|| = \sqrt{3^2 + 4^2} = 5$$

Scalars & Vectors

v is a vector in a Two Dimensional space

- v is a vector in \mathbf{R}^3
 - v = (3, 4, 5)

Magnitude is also known as the **Euclidean Norm of the Vector**

$$\|v\| = \sqrt{3^2 + 4^2 + 5^2} = 7.07$$

Scalars & Vectors

v is a vector in a Three Dimensional space

v is a vector in \mathbf{R}^n

v is a vector in a n Dimensional space

 $v = (x_1, x_2, x_3 \dots x_n)$

Magnitude is also known as the **Euclidean Norm of the Vector**

$$\|v\| = \sqrt{x_1^2 + x_2^2 + x_3^2 \dots x_n^2}$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Scalars & Vectors

A **Unit Vector** is a vector of length 1 and is used to represent directions

$$\hat{v} = \frac{v}{\parallel v \parallel}$$

A Unit Vector (represented by the "hat") is computed by dividing a vector by its magnitude

In \mathbb{R}^2 the unit vectors in the direction of the x and y axes are:

$$\hat{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \hat{y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

In \mathbb{R}^3 the unit vectors in the direction of the x, y and z axes are:

$$\hat{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad \hat{y} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \hat{z} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Unit Vector

A **Unit Vector** is a vector of length 1 and is used to represent directions

$$\hat{v} = \frac{v}{\parallel v \parallel}$$

A Unit Vector (represented by the "hat") is computed by dividing a vector by its magnitude

Every Vector can be written as the linear combination of unit vectors

$$v = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \qquad \Rightarrow v = 2\hat{x} + 3\hat{y}$$

 $\Rightarrow v = 2\hat{x} + 4\hat{y} + x\hat{z}$ _6_

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Unit Vector

Sum of Two Vectors is the sum of the scalar components of the Vectors v_1 and v_2 are vectors in \mathbf{R}^2

$$v_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \qquad v_2 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

$$v_1 + v_2 = \begin{bmatrix} (3+4) \\ (4+3) \end{bmatrix} = \begin{bmatrix} 7 \\ 7 \end{bmatrix}$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Addition of Vectors

Sum of Two Vectors is the sum of the scalar components of the Vectors

 v_1 and v_2 are vectors in \mathbb{R}^n

$$v_{1} = \begin{bmatrix} x_{11} \\ x_{12} \\ x_{13} \\ \cdots \\ x_{1n} \end{bmatrix} \qquad v_{2} = \begin{bmatrix} x_{21} \\ x_{22} \\ x_{23} \\ \cdots \\ x_{2n} \end{bmatrix}$$

$$\begin{bmatrix} x_{1n} \end{bmatrix} \begin{bmatrix} x_{2n} \\ x_{2n} \end{bmatrix}$$

$$v_1 + v_2 = \begin{bmatrix} (x_{11} + x_{21}) \\ (x_{12} + x_{22}) \\ (x_{13} + x_{23}) \\ \dots \\ (x_{1n} + x_{2n}) \end{bmatrix}$$

Vector Add

$$v_1 + v_2 = 1$$

Vector Add
 $v_1 + (v_2 + 1)$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Addition of Vectors

Difference of Two Vectors is the difference of the scalar components of the Vectors

 v_1 and v_2 are vectors in \mathbf{R}^2

$$v_{1} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \qquad v_{2} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$
$$v_{1} - v_{2} = \begin{bmatrix} (3 - 4) \\ (4 - 3) \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Vector Subtraction
$$v_1 - v_2 = v_1$$

Negative Vector but in the optimized by the second seco

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Subtraction of Vectors

Difference of Two Vectors is the difference of the scalar components of the Vectors

 v_1 and v_2 are vectors in \mathbb{R}^n

$$v_{1} = \begin{bmatrix} x_{11} \\ x_{12} \\ x_{13} \\ \cdots \\ x_{1n} \end{bmatrix} \qquad v_{2} = \begin{bmatrix} x_{21} \\ x_{22} \\ x_{23} \\ \cdots \\ x_{2n} \end{bmatrix}$$

Vector Subtrative
$$v_1 - v_2 = v_1$$

Negative Vector but in the optimized by the second secon

$$v_{1} - v_{2} = \begin{bmatrix} (x_{11} - x_{21}) \\ (x_{12} - x_{22}) \\ (x_{13} - x_{23}) \\ \dots \\ (x_{1n} - x_{2n}) \end{bmatrix}$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Subtraction of Vectors

Multiplying a Vector by a Positive Scalar scales the magnitude for the same direction

$$v = \begin{bmatrix} 2\\ 2 \end{bmatrix} \quad k = 2 \qquad \Rightarrow kv = \begin{bmatrix} 4\\ 4 \end{bmatrix}$$
$$v = \begin{bmatrix} x_1\\ x_2\\ x_3\\ \cdots\\ x_n \end{bmatrix} \qquad \Rightarrow kv = \begin{bmatrix} kx_1\\ kx_2\\ kx_3\\ \cdots\\ kx_n \end{bmatrix} \qquad \xrightarrow{4}$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Scalar Vector Multiplication

Multiplying a Vector by a Negative Scalar scales the magnitude for the opposite direction

$$v = \begin{bmatrix} 2\\ 2 \end{bmatrix} \quad k = -2 \quad \Rightarrow kv = \begin{bmatrix} -4\\ -4 \end{bmatrix}$$
$$v = \begin{bmatrix} x_1\\ x_2\\ x_3\\ \cdots\\ x_n \end{bmatrix} \Rightarrow -kv = \begin{bmatrix} -kx_1\\ -kx_2\\ -kx_3\\ \cdots\\ -kx_n \end{bmatrix} \xrightarrow{4}$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Scalar Vector Multiplication

The Scalar Product of Two Vectors, also known as the Dot Product, results in a Scalar

$$v_{1} \cdot v_{2} = || v_{1} || || v_{2} || \cos\theta$$
$$v_{1} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \quad v_{2} = \begin{bmatrix} 5 \\ 1 \end{bmatrix} \quad \theta = 64.65^{\circ}$$
$$|| v_{1} || = \sqrt{1^{2} + 4^{2}} = \sqrt{17}$$
$$|| v_{2} || = \sqrt{5^{2} + 1^{2}} = \sqrt{26}$$
$$v_{1} \cdot v_{2} = \sqrt{17} \times \sqrt{26} \times \cos(64.65) = 9$$

Scalar Product of Two Vectors

The Scalar Product of Two Vectors, also known as the Dot Product, results in a Scalar

$$v_{1} = \begin{bmatrix} x_{11} \\ x_{12} \\ x_{13} \\ \cdots \\ x_{1n} \end{bmatrix} \qquad v_{2} = \begin{bmatrix} x_{21} \\ x_{22} \\ x_{23} \\ \cdots \\ x_{2n} \end{bmatrix}$$

 $v_1 \cdot v_2 = x_{11} x_{21} + x_{12} x_{22} + x_{13} x_{23} \dots x_{1n} x_{2n}$

Example

$$v_1 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$
 $v_2 = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$
 $v_1 \cdot v_2 = (1 \times 5) + (4 \times 1) = 9$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Scalar Product of Two Vectors

The Vector Product of Two Vectors, also known as the Cross Product, results in a Vector

 $v_1 \times v_2 = ||v_1|| ||v_2|| sin(\theta) \hat{e}$

Magnitude is $||v_1|| ||v_2|| sin(\theta)$ Direction is given by the unit vector \hat{e} \hat{e} is perpendicular to the plane containing v_1 and v_2 Direction of \hat{e} is given by the right hand rule

$$a = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \qquad b = \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} \qquad \Rightarrow a \times b = \begin{bmatrix} a_y b_z \\ a_z b_x \\ a_x b_y \end{bmatrix}$$

While the Vector Cross Product can be generalized to higher dimensions, most applications are in three dimensions

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Vector Product of Two Vectors

A Matrix is a rectangular array of numbers, arranged in rows and columns

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

(2 × 3) matrix
$$M \text{ is a "two}$$

2 rows, 3 co

An $(n \times 1)$ matrix is a Column Vector

$$v = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{bmatrix}$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

by three" matrix

lumns

An $(1 \times n)$ matrix is a Row Vector

 $v = \begin{bmatrix} x_1 & x_2 & x_3 & \dots & x_n \end{bmatrix}$

A Matrix with the same number of rows and columns is called a square matrix

$$M_{1} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$(3 \times 3) \text{ matrix}$$

$$M_{2} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \end{bmatrix}$$

$$(5 \times 5) \text{ matrix}$$

$$M_{1} \text{ is } 3 \text{ row}$$

s a "three by three" matrix

vs, 3 columns

s a "five by five" matrix

ws, 5 columns

The **Identity Matrix** is one where the elements on the diagonal are 1 and the rest are 0

$$M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 (3×3) identity matrix

The **Zero Matrix** is one where all the elements are zero

$$M = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$(2 \times 3) \text{ zero matrix}$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

dentity Matrix is always a square matrix

A Zero Matrix can have any dimensions

The Matrix Transpose is an operation that swaps the rows and columns of a Matrix

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \quad \Rightarrow M^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$
$$(2 \times 3) \text{ matrix} \qquad (3 \times 2) \text{ matrix}$$

Transpose of a Square Matrix is another Square Matrix

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \Rightarrow M^{T} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$

(3 × 3) matrix (3 × 3) matrix

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Matrix Transpose

Transpose of a Matrix is a Matrix where the rows become columns and the columns become rows

Properties of the Transpose

$$(A + B)^T = A^T + B^T$$

 $(A - B)^T = A^T - B^T$
 $(A^T)^T = A$

Two Matrices M_1 and M_2 are equal if they have the same number of rows and columns and each element of M_1 is equal to the corresponding element of M_2

 $\Rightarrow M_1 = M_2$

A Matrix M is symmetric if the transpose of the matrix is equal to the original matrix

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Matrix Addition of two matrices A and B is defined as the operation of adding the elements of A with the corresponding elements of BMatrix Addition is only defined for matrices that have the same number of rows and columns

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 8 \\ 9 & 7 \\ 4 & 5 \end{bmatrix} \quad \Rightarrow A + B = \begin{bmatrix} 1+3 & 4+8 \\ 2+9 & 5+7 \\ 3+4 & 6+5 \end{bmatrix} = \begin{bmatrix} 4 & 12 \\ 11 & 12 \\ 7 & 11 \end{bmatrix}$$
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} & \dots & b_{1n} \\ b_{21} & b_{22} & b_{23} & \dots & b_{2n} \\ b_{31} & b_{32} & b_{33} & \dots & b_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{m1} & b_{m2} & b_{m3} & \dots & b_{mn} \end{bmatrix} \quad A + B = C$$
$$\Rightarrow c_{ij} = a_{ij} + b_{ij}$$

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 8 \\ 9 & 7 \\ 4 & 5 \end{bmatrix} \quad \Rightarrow A + B = \begin{bmatrix} 1+3 & 4+8 \\ 2+9 & 5+7 \\ 3+4 & 6+5 \end{bmatrix} = \begin{bmatrix} 4 & 12 \\ 11 & 12 \\ 7 & 11 \end{bmatrix}$$
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} & \dots & b_{1n} \\ b_{21} & b_{22} & b_{23} & \dots & b_{2n} \\ b_{31} & b_{32} & b_{33} & \dots & b_{3n} \\ \vdots & \vdots & \vdots & \vdots \\ b_{m1} & b_{m2} & b_{m3} & \dots & b_{mn} \end{bmatrix} \quad \Rightarrow C$$

Matrix Addition

Matrix Addition of two matrices A and B is defined as the operation of adding the elements of A with the corresponding elements of B Matrix Addition is only defined for matrices that have the same number of rows and columns

Matrix Addition is Commutative

A + B = B + A

Matrix Addition is Associative

A + (B + C) = (A + B) + C

A + B is a matrix with the same number of rows and columns of A and B

Matrix Addition

Matrix Subtraction of two matrices A and B is defined as the operation of subtracting the elements of A from the corresponding elements of B Matrix Subtraction is only defined for matrices that have the same number of rows and columns

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 8 \\ 9 & 7 \\ 4 & 5 \end{bmatrix} \quad \Rightarrow A - B = \begin{bmatrix} 1 - 3 & 4 - 8 \\ 2 - 9 & 5 - 7 \\ 3 - 4 & 6 - 5 \end{bmatrix} = \begin{bmatrix} -2 & -4 \\ -7 & -2 \\ -1 & 1 \end{bmatrix}$$
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} & \dots & b_{1n} \\ b_{21} & b_{22} & b_{23} & \dots & b_{2n} \\ b_{31} & b_{32} & b_{33} & \dots & b_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{m1} & b_{m2} & b_{m3} & \dots & b_{mn} \end{bmatrix} \quad A - B = C$$

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 8 \\ 9 & 7 \\ 4 & 5 \end{bmatrix} \quad \Rightarrow A - B = \begin{bmatrix} 1 - 3 & 4 - 8 \\ 2 - 9 & 5 - 7 \\ 3 - 4 & 6 - 5 \end{bmatrix} = \begin{bmatrix} -2 & -4 \\ -7 & -2 \\ -1 & 1 \end{bmatrix}$$
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} & \dots & b_{1n} \\ b_{21} & b_{22} & b_{23} & \dots & b_{2n} \\ b_{31} & b_{32} & b_{33} & \dots & b_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{m1} & b_{m2} & b_{m3} & \dots & b_{mn} \end{bmatrix} \quad A - B = C$$
$$\Rightarrow c_{ij} = a_{ij} - b_{ij}$$

Matrix Subtraction

Matrix Subtraction of two matrices A and B is defined as the operation of subtracting the elements of A from the corresponding elements of B Matrix Subtraction is only defined for matrices that have the same number of rows and columns

Matrix Subtraction is not Commutative

 $A - B \neq B - A$

Matrix Subtraction is not Associative $A - (B - C) \neq (A - B) - C$

A - B is a matrix with the same number of rows and columns of A and B

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Matrix Subtraction

Product of a Scalar s and Matrix A is defined defined as the operation of multiplying the scalar with every element of A

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad s = 3 \qquad \Rightarrow sA = 3 \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 3 & 6 & 9 \\ 12 & 15 & 18 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad s = -3 \qquad \Rightarrow sA = -3 \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -3 & -6 & -9 \\ -12 & -15 & -18 \end{bmatrix}$$

Product of a Scalar and a Matrix is distributive s(A + B) = sA + sBs(A - B) = sA - sB

sA is a matrix with the same number of rows and columns of A

Product of a Scalar and a Matrix

The **Conjugate Transpose** of a matrix, also known as the Hermitian Transpose, is the operation of applying the complex conjugate to each element followed by the transpose

Conjugate Transpose

Complex Conjugate of a complex Matrix

Complex Conjugate of a complex number results in a complex number with the same real and imaginary parts but with the opposite sign

The Conjugate Transpose of a matrix, also known as the Hermitian Transpose, is the operation of applying the complex conjugate to each element followed by the transpose

The Conjugate Transpose of a Real Matrix is simply the Transpose

Conjugate Transpose

Complex Conjugate of a complex Matrix

Transpose gives us the Conjugate Transpose

The Conjugate Transpose of a matrix, also known as the Hermitian Transpose, is the operation of applying the complex conjugate to each element followed by the transpose

$$A = \begin{bmatrix} 2 & 4 \\ -2 & 1 \end{bmatrix}$$
$$\bar{A}^{H} = A^{T} = \begin{bmatrix} 2 & -2 \\ 4 & 1 \end{bmatrix}$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Conjugate Transpose

onjugate Transpose of a Real x is simply the Transpose

A Matrix that is equal to its Conjugate Transpose (or Hermitian Transpose), is known as a Hermitian Matrix

$$A = \begin{bmatrix} 1 & 2+3i & 4-6i \\ 2-3i & 4 & -2i \\ 4+6i & 2i & 8 \end{bmatrix}$$
$$\bar{A} = \begin{bmatrix} 1 & 2-3i & 4+6i \\ 2+3i & 4 & 2i \\ 4-6i & -2i & 8 \end{bmatrix}$$
$$\bar{A}^{H} = \begin{bmatrix} 1 & 2+3i & 4-6i \\ 2-3i & 4 & -2i \\ 4+6i & 2i & 8 \end{bmatrix}$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Hermitian Matrix

A is a Hermitian Matrix because $A = \bar{A}^H$

The elements on the diagonal must be real because they must be equal to their complex conjugate

Matrix Norm is a numeric quantity that gives a measure of the magnitude of a Matrix

1-Norm of a matrix is the maximum of the sum of the absolute values of the columns

$$||A||_1 = \max_{1 \le j \le n} \left(\sum_{i=1}^n |a_{ij}| \right) \qquad A =$$

- 1 2 3 4 5 6
- $||A||_1 = max((1 + 2 + 3), (4 + 5 + 6))$ = max(6,15)
 - = 15

Matrix Norm is a numeric quantity that gives a measure of the magnitude of a Matrix

Infinity-Norm of a matrix is the maximum of the sum of the absolute values of the rows

$$\|A\|_{\infty} = \max_{1 \le i \le n} \left(\sum_{j=1}^{n} |a_{ij}| \right) \qquad A =$$

1 2 3 4 5 6

 $||A||_{\infty} = max((1+4), (2+5), (3+6))$ = max(5,7,9)

= 9

Matrix Norm is a numeric quantity that gives a measure of the magnitude of a Matrix

Euclidean Norm of a matrix square root of the sum of squares of the elements

$$\|A\|_{E} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} (a_{ij})} \qquad A =$$

 $\parallel A \parallel$

$\|A\|_E = \sqrt{A^T A}$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$E = \sqrt{1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2}$$
$$= \sqrt{91}$$
$$= 9.53$$

 i^{th} row A to the j^{th} column of B to obtain the element in the i^{th} row and j^{th} column of C

Matrix Multiplication is only defined if the number of columns of Aequals the number of rows of C

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 8 \\ 9 & 7 \\ 4 & 5 \end{bmatrix} \quad C = A \times A \times B = \begin{bmatrix} (1 \times 3 + 2 \times 9 + 3 \times 4) & (1) \\ (4 \times 3 + 5 \times 9 + 6 \times 4) & (4) \end{bmatrix}$$

Matrix Multiplication

Matrix Multiplication of two matrices A and B is defined as the operation of multiplying the

B =	[1	2	3] ·	[3] 9 4]	[1	2	3] ·	[8] [7] [5]
	[4	5	6] ·	[3] 9 4]	[4	5	6] ·	[8] 7 5]

 $\begin{bmatrix} 1 \times 8 + 2 \times 7 + 3 \times 5 \\ 4 \times 8 + 5 \times 7 + 6 \times 5 \end{bmatrix} = \begin{bmatrix} 33 & 37 \\ 81 & 97 \end{bmatrix}$

 (2×2) matrix

Matrix Multiplication of two matrices A and B is defined as the operation of multiplying the i^{th} row A to the j^{th} column of B to obtain the element in the i^{th} row and j^{th} column of C If A is an $m \times n$ matrix and B is an $n \times k$ matrix then C = AB is an $m \times k$ matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix} B = \begin{bmatrix} b_{11} & b_{12} & b_{13} & \dots & b_{1k} \\ b_{21} & b_{22} & b_{23} & \dots & b_{2k} \\ b_{31} & b_{32} & b_{33} & \dots & b_{3k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & b_{n3} & \dots & b_{nk} \end{bmatrix} C = AB = \begin{bmatrix} c_{11} & c_{12} & c_{13} & \dots & c_{1k} \\ c_{21} & c_{22} & c_{23} & \dots & c_{2k} \\ c_{31} & c_{32} & c_{33} & \dots & c_{3k} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{m1} & c_{m2} & c_{m3} & \dots & c_{mk} \end{bmatrix}$$

where...

$$cij = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$$

 $\forall i = 1 \dots m \text{ and } j = 1 \dots k$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Matrix Multiplication

Matrix Multiplication is Associative A(BC) = (AB)C

Matrix Multiplication is Distributive

A(B+C) = AB + AC

Matrix Multiplication is not Commutative

 $AB \neq BA$

Multiplication with the Identity Matrix

$$AI = IA = A$$

Rules of Matrix Multiplication

Multiplication with the Zero Matrix

OA = AO = O

Multiplying an $m \times n$ matrix with an $n \times k$ matrix produces an $m \times k$ matrix

Multiplication of an $m \times n$ matrix with an $p \times q$ matrix, where $n \neq q$ is undefined

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value computed from the elements of the matrix

Determinant of a 2×2 matrix

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{vmatrix} a_{11}a_{22} - a_{21}a_{12} \end{vmatrix}$$

Example

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} = |2 \times 5 - 4 \times 3| = |10 - 12$$

Determinants are only defined for square matrices

Determinant of a Matrix

= -2

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value

Every element of this 3×3 matrix has an associated minor

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Associated minor for a_{11}

$$A_{11} = \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} = |(5 \times 9) - (8 \times 6)| = |45 - 48| = 3$$

Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value

Every element of this 3×3

matrix has an associated minor

The associated minor for a_{11} (represented by A_{11}) is the determinant of the 2×2 matrix formed by removing the row 1 and column 1

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Associated minor for a_{12}

$$A_{12} = \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} = |(4 \times 9) - (7 \times 6)| = |36 + |36|$$

Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value

Every element of this 3×3

matrix has an associated minor

The associated minor for a_{12} (represented by A_{12}) is the determinant of the 2×2 matrix formed by removing the row 1 and column 2

-42|=6

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Associated minor for a_{13}

$$A_{13} = \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = |(4 \times 8) - (7 \times 5)| = |32 - 35| = 3$$

Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value

Every element of this 3×3

matrix has an associated minor

The associated minor for a_{13} (represented by A_{13}) is the determinant of the 2×2 matrix formed by removing the row 1 and column 3

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Associated minor for a_{21}

$$A_{21} = \begin{vmatrix} 2 & 3 \\ 8 & 9 \end{vmatrix} = |(2 \times 9) - (8 \times 3)| = |18 - 24| = 6$$

Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value

Every element of this 3×3

matrix has an associated minor

The associated minor for a_{21} (represented by A_{21}) is the determinant of the 2×2 matrix formed by removing the row 2 and column 1

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value

The Determinant is calculated by the linear combination of the product of the elements of the first row and their associated minors with alternating signs

Alternating '+' and '-' signs

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value

The Determinant is calculated by the linear combination of the product of the elements of the first row and their associated minors with alternating signs

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value

The Determinant is calculated by the linear combination of the product of the elements of the first row and their associated minors with alternating signs

Alternate a '-' sign

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value

The Determinant is calculated by the linear combination of the product of the elements of the first row and their associated minors with alternating signs

Alternate a '+' sign

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

The Determinant is calculated by the linear combination of the product of the elements of the first row and their associated minors with alternating signs

$$|A| = +1 \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} =$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value

 $1 | (5 \times 9) - (8 \times 6) | - 2 | (4 \times 9) - (7 \times 6) | + 3 | (4 \times 8) - (7 \times 5) |$ $= 1 |45 - 48| - 2 |36 - 42| + 3 |32 - 35| = (1 \times 3) - (2 \times 6) + (3 \times 3)$ = 3 - 12 + 9 = 0

$$AA^{-1} = A^{-1}A = I$$

The inverse of a matrix is undefined for a non-square matrix The inverse of a matrix is undefined for some square matrices

If a matrix has an inverse then it is said to be non-singular If a matrix does not have an inverse then it is said to be singular

Inverse of a 2×2 matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad A^{-1} = \frac{1}{|A|} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix} = \frac{1}{|a_{11}a_{22} - a_{21}a_{12}|} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

Inverse of a Matrix

$$AA^{-1} = A^{-1}A = I$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Inverse of a Matrix

If the determinant is zero then the inverse of the matrix is undefined

$$\begin{bmatrix} 2 \\ -a_{21} \end{bmatrix} = \frac{1}{|a_{11}a_{22} - a_{21}a_{12}|} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

$$AA^{-1} = A^{-1}A = I$$

Inverse of a 2 × 2 matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix} = \frac{1}{|a_{11}a_{22} - a_{21}a_{12}|} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Inverse of a Matrix

calculated by ents, reversing d then dividing by

$$AA^{-1} = A^{-1}A = I$$

Inverse of a 2 × 2 matrix is calculated by
swapping the diagonal elements, reversing
the sign of the other two and then dividing by
the determinant of A

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} 3 & -0 \\ -2 & 1 \end{bmatrix} = \frac{1}{|1 \times 3 - 2 \times 0|} \begin{bmatrix} 3 & 0 \\ -2 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 0 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{-2}{3} & \frac{1}{3} \end{bmatrix}$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Inverse of a Matrix

$$AA^{-1} = A^{-1}A = I$$

Inverse of a 2 × 2 matrix:
$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix}$$
$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} = \frac{1}{|(1 \times 2) - (-2 \times -1)|}$$
$$Determinant of A^{-1} is undefind$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Inverse of a Matrix

f a 2×2 matrix is calculated by the diagonal elements, reversing of the other two and then dividing by minant of A

Logistic Regression

An introduction to Logistic Regression. A Logistic Regression model use used to predict a binary value (the dependent variable) for one or more independent variables using a threshold to classify a probability.

Multiple Regression

Multiple regression extends the two dimensional linear model introduced in Simple Linear Regression to k + 1 dimensions with one dependent variable, k independent variables and k+1 parameters.

Cost Function & Gradient Descent for Logistic Regression

An introduction to the Cost function for Logistic Regression long with its partial derivative (the gradient vector). The model parameters (B & W) are then optimized using Maximum Likelihood Estimation and Gradient Descent.

Related Tutorials & Textbooks

For a complete list of tutorials see: https://arrsingh.com/ai-tutorials

