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Scalars & Vectors

Scalar: A scalar is a single numeric value (positive, negative or zero)

Vector: A Vector (also known as a Euclidean Vector) is
a geometric object with magnitude & direction

A Vector is represented by an ordered list of scalars - the endpoint of the vector
in the cartesian coordinate system

v = (3,4) 4

-3 —2 -1 0 1 2 3

A Vector in 2D Space
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Scalars & Vectors

Scalar: A scalar is a single numeric value (positive, negative or zero)

Vector: A Vector (also known as a Euclidean Vector) is
a geometric object with magnitude & direction

A Vector is represented by an ordered list of scalars - the endpoint of
the vector in the cartesian coordinate system

v = (3,4) : 0

v is a vector in a Two Dimensional space 2 /

vis a vector in R?

-3 —2 -1 0 1 2 3

A Vector in 2D Space
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Scalars & Vectors

Scalar: A scalar is a single numeric value (positive, negative or zero)

Vector: A Vector (also known as a Euclidean Vector) is
a geometric object with magnitude & direction

A Vector is represented by an ordered list of scalars - the endpoint of Z
the vector in the cartesian coordinate system N

(3, 4, 5)

v=(34))

v is a vector in a Three Dimensional space

vis a vector in R>

A Vector in 3D Space
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Scalars & Vectors

Scalar: A scalar is a single numeric value (positive, negative or zero)

Vector: A Vector (also known as a Euclidean Vector) is
a geometric object with magnitude & direction

A Vector is represented by an ordered list of scalars - the endpoint of
the vector in the cartesian coordinate system

v = (3,4,5,6)

v is a vector in a Four Dimensional space

vis a vector in R*
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Scalars & Vectors

Scalar: A scalar is a single numeric value (positive, negative or zero)

Vector: A Vector (also known as a Euclidean Vector) is
a geometric object with magnitude & direction

A Vector is represented by an ordered list of scalars - the endpoint of
the vector in the cartesian coordinate system

The Scalar components of a Vector

V= (X, Xy, X3...X,)

A Vector in n dimensional Euclidean space

vis a vector in R”

can be laid out as rows or columns

Lets generalize this to n dimensions
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Scalars & Vectors

Scalar: A scalar is a single numeric value (positive, negative or zero)

Vector: A Vector (also known as a Euclidean Vector) is
a geometric object with magnitude & direction

A Vector is represented by an ordered list of scalars - the endpoint of
the vector in the cartesian coordinate system

V:[xl X2 X3 Xn]

v is a column vector in R” vis a row vector in R”

7 rows and 1 column 1 row and n columns
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Scalars & Vectors

Scalar: A scalar is a single numeric value (positive, negative or zero)

Vector: A Vector (also known as a Euclidean Vector) is
a geometric object with magnitude & direction

A Vector is represented by an ordered list of scalars - the endpoint of
the vector in the cartesian coordinate system

V:[xl X2 X3 Xn]

v is a column vector in R” vis a row vector in R”

(n X 1) column vector (1 X n) row vector
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Transpose a Vector

Scalar: A scalar is a single numeric value (positive, negative or zero)

Vector: A Vector (also known as a Euclidean Vector) is
a geometric object with magnitude & direction

Transpose is an operation that swaps the rows and columns of a Vector

yl=1x % x5 ... X

v is a column vector in R” v!is a row vector in R”

(n X 1) column vector (1 X n) row vector
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Transpose a Vector

Scalar: A scalar is a single numeric value (positive, negative or zero)

Vector: A Vector (also known as a Euclidean Vector) is
a geometric object with magnitude & direction

Transpose is an operation that swaps the rows and columns of a Vector

X1
oI — 2 v=[X X A3 ... X
. NT _
; 0D =
y!lis a column vector in R” vis a row vector in R”

(n X 1) column vector (1 X n) row vector
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Scalars & Vectors

Vector: A Vector is a geometric object with magnitude & direction
Magnitude of a Vector is the distance between the two points.

Magnitude is the length of the Vector.
The distance between (0,0) and (3,4)

vis a vector in R?

v = (3,4)

-3 —2 -1 0 1 2 3

A Vector in 2D Space
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Scalars & Vectors

Vector: A Vector is a geometric object with magnitude & direction
Magnitude of a Vector is the distance between the two points.

Magnitude is the length of the Vector.
The distance between (0,0) and (3,4)

— = - = = — — 1
|Pythagoras Theorem can be used to

ﬁalculate the length of the vector | y =4

vis a vector in R?

v = (3,4)

N

m=1/x>+y>=1/3>+4>=1/25=5 L

A Vector in 2D Space

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 12



https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Scalars & Vectors

Vector: A Vector is a geometric object with magnitude & direction
Magnitude of a Vector is the distance between the two points.

Magnitude is the length of the Vector.
The distance between (0,0) and (3,4)

vis a vector in R?

v = (3,4)
Magnitude is also known as the 4
Euclidean Norm of the Vector :
- - - - B |
quthagoras Theorem can be used to 2
kEalculate the length of the vector | y =4
m=/x*+y? =32 +42=4/25 =5 —

A Vector in 2D Space
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Scalars & Vectors

Vector: A Vector is a geometric object with magnitude & direction
Magnitude of a Vector is the distance between the two points.

v is a vector in R? v is a vector in a Two Dimensional space

v = (3,4)

Magnitude is also known as the
Euclidean Norm of the Vector

| v]=4/3%+4%=5

A Vector in 2D Space
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Scalars & Vectors

Vector: A Vector is a geometric object with magnitude & direction
Magnitude of a Vector is the distance between the two points.

v is a vector in R? v is a vector in a Three Dimensional space

v=(34))

Magnitude is also known as the
Euclidean Norm of the Vector

| v||=v32+ 4%+ 52 =7.07

A Vector in 2D Space
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Scalars & Vectors

Vector: A Vector is a geometric object with magnitude & direction
Magnitude of a Vector is the distance between the two points.

vis a vectorin R” v is a vector in a n Dimensional space

V= (X[, Xy, X3...X,)

Magnitude is also known as the
Euclidean Norm of the Vector

A Vector in 2D Space
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A Unit Vector is a vector of length 1 and is used to represent directions

A Unit Vector (represented by the “hat”) is
lcomputed by dividing a vector by its magnitude

Vv

vl

b=

ﬂ

|

1

L == e e -

In R? the unit vectors in the direction of the x and y axes are:

o[ b

Unit Vector

<>

In R? the unit vectors in the direction of the x, y and z axes are:

1 0 0
x=10] y=[1] Z=10
0 0 1
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Unit Vector

A Unit Vector is a vector of length 1 and is used to represent directions

5 — v A Unit Vector (represented by the “hat”) is :]
o |
| v lcomputed by dividing a vector by its magnitudeJ

Every Vector can be written as the linear combination of unit vectors

V:E] = v =2x+3y y
2
v= |4 =>Vv=2x+4y + xZ

6
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Addition of Vectors

Sum of Two Vectors is the sum of the scalar components of the Vectors

v, and v, are vectors in R”

)l

B+ _ m
7 ;

V1+V2: (4+3)
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Addition of Vectors

Sum of Two Vectors is the sum of the scalar components of the Vectors

— - ]

: n - .. . .
v, and v, are vectors in R Vector Addition is commutative

V1+V2:V2+V1

|

A1 A21 — E—
X12 X2 Vector Addition is associative ]
— | — |
1T s 2T | s Vi + (1 +v3) = (v + 1)) + 3]
Xn Xon 4
3
(X171 + X1 2
(X12 + X
v+ v, = |
L2 (g3 + x3)
** -3 —2 -1 0 1 2 3 4
(xln + x2n)
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Subtraction of Vectors

Difference of Two Vectors is the difference of the scalar components of the Vectors

v, and v, are vectors in R”

-
LVector Subtraction is the same as addmg a negative vector|
3 4 1V, — 1y = _
Vl — [4 Vz — 3 rL———va Vz _jrvl +—;LIV2)LjT - _
gNegative Vector is the same magnitude | , (3.4)
but in the opposite direction 3 (43)

(3 —4)
"1“’2=[<4—3>] [

(_49 T 3) -3
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Subtraction of Vectors

Difference of Two Vectors is the difference of the scalar components of the Vectors

v, and v, are vectors in R"

e S — e — E— E— — r‘Tj

N \ LVector Subtractlon is the same as adding a negative vector]
11 21 |
Vi—Vy =V —V |
x2 ‘x22 L—l;—-‘Lz jf—l—:l_vlgL:—fz)Ljr —_—
Vi= 1 Xy3 Vo = | X3 INegative Vector is the same magnitude | ,
e o “Llrout in the opposite direction
An Ao — — — T
(X117 — X21)
(X1 — X))
Vi — V) = T [
L 727 (X3 — X3)
(xln o x2n)
-3
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Scalar Vector Multiplication

Multiplying a Vector by a Positive Scalar scales the magnitude for the same direction

o e e

X kxi 4 4 7| Y
Xy kx, e : L !
— — V
V A3 = kv kx3 2 (2,2) 2 ’
. . o V
n kxn 1 # 1 " 4
2 10 1 2 3 4 2 1 0 1 2 3 4
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Scalar Vector Multiplication

Multiplying a Vector by a Negative Scalar scales the magnitude for the opposite direction

] e e

0 4
4
xl _k 'xl —4 -3 -2 -1 0 1
xz _k.X2 3 - -1
Y = — kv =
x3 = —kX3 - (2,2) _ kV f/ —2
X .« o V
n —kx, 4 * 0
2 1 o0 1 2 3 4 (-4 _ 1) -
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Scalar Product of Two Vectors

The Scalar Product of Two Vectors, also known as the Dot Product, results in a Scalar

vi vy =l vy L vy Il cosO
g H vy = H 0 = 64.65° G
v
| v, l= V12442 =4/17
| v, [|= V524 12 =4/26 2
V|tV = \/177 X \@ X cos(64.65) =9 iy p v2 e
A"
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Scalar Product of Two Vectors

The Scalar Product of Two Vectors, also known as the Dot Product, results in a Scalar

S — B
X Xn1 |Angle between two Vectors|
V-V
X12 X22 ﬁcas(@) = S
=l | 2= | L lvillivell |
xln X2n 4
Vit Vo = X1 Xy T Xpp X0 T X3 X03 - - - Xy Xy |V
Example !
11 R
vl B 4 Vo = 1 1 V2
v,
V1V2:(1X5)+(4X1):9 0 1 5 3 4 5
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Vector Product of Two Vectors

The Vector Product of Two Vectors, also known as the Cross Product, results in a Vector

vy X vy =l vy |l v, |l sin(6) @ Vi XV,

Magnitudeis || v; || || v, || sin(6) V1
Direction is given by the unit vector e

e is perpendicular to the plane containing v, and v,

Direction of ¢ is given by the right hand rule Vs

a, b, aybz — azby Matrix Determinants are a more
a= |4 h = by >aXxb=|ab,—ab, convenient method to compute
a, b. ab, — ab, the Cross Product of Two Vectors

While the Vector Cross Product can be generalized to higher dimensions, most
applications are in three dimensions
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Matrix

A Matrix is a rectangular array of numbers, arranged in rows and columns

M is a “two by three” matrix

M-l

45 6 2 rows, 3 columns

(2 X 3) matrix

An (n X 1) matrix is a Column Vector An (1 X n) matrix is a Row Vector
X1
XD
YV = x3 V:[xl .x2 X3 Xn]
X
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Matrix

A Matrix with the same number of rows and columns is called a square matrix

M, is a “three by three” matrix
3 rows, 3 columns

M, is a “five by five” matrix

5 rows, 5 columns
(5 X 5) matrix

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons .org/licenses /by-nc-sa /4.0/) 29
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(3 X 3) matrix

1 2 3 4 5
6 7 8 9 10
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Matrix

The Identity Matrix is one where the elements on the diagonal are 1 and the rest are O

1 0 O
M=10 1 0 An ldentity Matrix is always a square matrix
0 0 1

(3 X 3) identity matrix

The Zero Matrix is one where all the elements are zero

w009

(2 X 3) zero matrix
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Matrix Transpose

The Matrix Transpose is an operation that swaps the rows and columns of a Matrix

1 2 3 . L4 Transpose of a Matrix is a Matrix
M = 4 5 6 =M =125 where the rows become columns
3 6 and the columns become rows
(2 X 3) matrix (3 X 2) matrix

Transpose of a Square Matrix is another Square Matrix .
Properties of the Transpose

1 2 3 1 4 7 A+B)! =AT+ BT
M=1{4 56| >M =[2 5 8 (A—-B)l =AT - BT
7 8 9 36 9

(A7) =A

(3 X 3) matrix (3 X 3) matrix
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Matrix Equality

Two Matrices M| and M, are equal if they have the same number of rows and columns
and each element of M, is equal to the corresponding element of M,

1 2 3
M, =
456] .

(2 X 3) matrix (2 X 3) matrix

1 2 3

M, =
1 4 5 6
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Symmetric Matrix

A Matrix M is symmetric if the transpose of the matrix is equal to the original matrix

1 -2 =7 I -2 -7 , —
M=|-2 5 6| M'=|-2 5 6 y'saSvEm_etAr;cTMatnx
—77 6 -0 iy 6 0 ecause —

(3 X 3) matrix (3 X 3) matrix , _
Only Square Matrices can be Symmetric

23 . L4 7 A is not a Symmetric Matrix
A= 1456 AT=12 5 8 because A # A'
7 8 9 3 6 9

(3 X 3) matrix (3 X 3) matrix
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Matrix Addition

Matrix Addition of two matrices A and B is defined as the operation of adding the
elements of A with the corresponding elements of B

Matrix Addition is only defined for matrices that have the same number of
rows and columns

1 4 3 8 l1+3 4438 4 12
A= 12 5 B=1|9 7 >A+B=|24+9 5+7| =111 12
3 6 4 5 3+44 645 7 11
all alz a13 « o o aln bll b12 b13 * e bln
thy Hpp dpz ... Uy, by by byz ... by, A+B=C
A — Cl31 a32 Cl33 c e a3n B — b31 b32 b33 .« o b3n
- ' ' ° . . . . = C;; = a; + sz
d a a ... a . . . .
ml m?2 m3 mn bm i bm 2 bm 3 ... bmn
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Matrix Addition

Matrix Addition of two matrices A and B is defined as the operation of adding the
elements of A with the corresponding elements of B

Matrix Addition is only defined for matrices that have the same number of
rows and columns

Matrix Addition is Commutative
A+B=B+A

Matrix Addition is Associative
A+B+C)=A+B)+C

A + B is a matrix with the same number of rows and columns of A and B
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Matrix Subtraction

Matrix Subtraction of two matrices A and B is defined as the operation of subtracting
the elements of A from the corresponding elements of B

Matrix Subtraction is only defined for matrices that have the same number of
rows and columns

1 4 3 8 l1-3 4-328 -2 -4
A=12 5 B=19 7 >A-B=12-9 5-7|=1|-7 =2
3 6 4 5 3—4 6-5 -1 1
all alz a13 aln bll b12 b13 vt bln
Uyy Uy dpyz ... Uy, byy byy by3 ... Dy, A—B=C
A = Cl31 a32 Cl33 st a3n B = b31 b32 b33 .« . b3n
. . . . . . . ‘ = Cij — aij _ bl]
a d d ... A . | . |
ml m2 m3 mn bm i bm 2 bm 3 ... bmn
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Matrix Subtraction

Matrix Subtraction of two matrices A and B is defined as the operation of subtracting
the elements of A from the corresponding elements of B

Matrix Subtraction is only defined for matrices that have the same number of
rows and columns

Matrix Subtraction is not Commutative
A—-B#B—-A

Matrix Subtraction is not Associative
A-B-C)#A-B)-C

A — B is a matrix with the same number of rows and columns of A and B
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Product of a Scalar and a Matrix

Product of a Scalar s and Matrix A is defined defined as the operation of multiplying the
scalar with every element of A

12 3 - 1 23] [3 6 9
A‘L 5 6] § =3 =>SA_3[4 5 6]_[12 15 18]
1 2 3 1 2 3 3 -6 -9
A= — — - — —
[4 5 6] = = A 3[4 5 6] [—12 15 —18]

Product of a Scalar and a Matrix is distributive
S(A+B) =5sA+ sB

S(A—B) =5A—sB

sA is a matrix with the same number of rows and columns of A
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Conjugate Transpose

The Conjugate Transpose of a matrix, also known as the Hermitian Transpose, is the
operation of applying the complex conjugate to each element followed by the transpose

2+3i 144
—2i 4

A=

Complex Conjugate of a complex Matrix

A = [2 ;,Bi ! ;41 Complex Conjugate of a complex number results in a
l

complex number with the same real and imaginary parts
T [2 _ 3 21 but with the opposite sign

1 —4i 4
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Conjugate Transpose

The Conjugate Transpose of a matrix, also known as the Hermitian Transpose, is the
operation of applying the complex conjugate to each element followed by the transpose

A — 2+& 1+m

Complex Conjugate of a complex Matrix
I [2 31— 41
) Transpose gives us the Conjugate Transpose

— 2 — 3
AH
[1 — 4

The Conjugate Transpose of a Real Matrix is simply the Transpose
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Conjugate Transpose

The Conjugate Transpose of a matrix, also known as the Hermitian Transpose, is the
operation of applying the complex conjugate to each element followed by the transpose

2 4
A = [_2 1] The Conjugate Transpose of a Real
Matrix is simply the Transpose
- 2 =2
AH — AT —
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Hermitian Matrix

A Matrix that is equal to its Conjugate Transpose (or Hermitian Transpose), is known as a
Hermitian Matrix

1 2431 4—-06i

A= |2-3i 4 — 21
4+6i 2 3 -

_ | 53 4+ 6i A is a Hermitian Matrix because A = A"

A= |24 3i 4 21 The elements on the diagonal must be real because
4 —-61 —2i 3 they must be equal to their complex conjugate

) 1 243 4—6i
Al =12-3; 4 —2i
44+6i 2i 8
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Matrix Norm

Matrix Norm is a numeric quantity that gives a measure of the magnitude of a Matrix

1-Norm of a matrix is the maximum of the sum of the absolute values of the columns

1 2 3
| A lli= max Z\al,\ A= [4 : 6]

| A ||,=max((14+2+3),(4+5+6))
= max(6,15)
15
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Matrix Norm

Matrix Norm is a numeric quantity that gives a measure of the magnitude of a Matrix

Infinity-Norm of a matrix is the maximum of the sum of the absolute values of the rows

L 12 3
| A || o= max Z\Cllj A= [4 5 6]

1<in | -
J=1

| A || = max((1+4),2+)5),(3+6))
= max(35,7,9)
=9
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Matrix Norm

Matrix Norm is a numeric quantity that gives a measure of the magnitude of a Matrix

Euclidean Norm of a matrix square root of the sum of squares of the elements

\\A\\E=\ii<al;,-> A=[}l : Z]
i=1 j=1

A |lo=V12+22+32+ 4%+ 5%+ 62

NG

= 9.53

| A |lz=VATA
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Matrix Multiplication

Matrix Multiplication of two matrices A and B is defined as the operation of multiplying the

l'th th

row A to thejth column of B to obtain the element in the 1" row andjth column of C

Matrix Multiplication is only defined if the number of columns of A
equals the number of rows of C

3 8

1 2 3]-19( [1 2 3]-17

1 2 3 5 3 4 5

45 6] Z ; 8 3 3

4 5 6]-19 [4 5 6]-17

(2 X 3) matrix (3 X 2) matrix 4 5

I X3+2%X94+3%x4) (I1Xx8+2XT7+3X5

=>C=A><B=(X+X+X)(X+X+ ):3337
4X3+5X94+6%x4) AX8+5XT+6X)5) 81 97

(2 X 2) matrix
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Matrix Multiplication

Matrix Multiplication of two matrices A and B is defined as the operation of multiplying the

h

i row A to the j”* column of B to obtain the element in the i’

row and j* column of C

If A is an m X n matrix and B is an n X kK matrix then C = AB is an m X k matrix

oy dpp dpz ... Uy, b,
A= |91 Y3 d33 ... U3, | p_ |by
aml am2 am3 ¢ e amn b
nl
where...
cij = a;by;+apby+ ...+ a;,b,; = Z aixby;
Vi=1l..mandj=1..k

n

k=1
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i1 ¢12 G130 ... Crg
Cr1 Cpp Gz ... OCop
AB = | ¢31 32 C33 ... (3
le Cm2 Cm3 c e ka
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Matrix Multiplication is Associative

ABC) = (AB)C
Matrix Multiplication is Distributive

AB+C)=AB+AC

Matrix Multiplication is not Commutative

AB # BA

Multiplication with the Identity Matrix

Al=IA=A
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Rules of Matrix Multiplication
Multiplication with the Zero Matrix

OA=A0 =0

Multiplying an m X n matrix with an
n X k matrix produces an m X k matrix

Multiplication of an m1 X n matrix with an
p X g matrix, where n # ¢ is undefined
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Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value
computed from the elements of the matrix

Determinant of a 2 X 2 matrix

A = 11 %12 = |a,a,, — a,,a
iy Qo 11922 — dp1dy)

A = [j 2] —[2X5-4x3[=[10—12]=—2

Determinants are only defined for square matrices
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Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value
computed from the elements of the matrix

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

Every element of this 3 X 3
matrix has an associated minor

oo L N
O O\ W
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Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value
computed from the elements of the matrix

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

Every element of this 3 X 3
matrix has an associated minor

\
o

N
|
- A~
o0 N
O O\

The associated minor for a;; (represented by A, )

is the determinant of the 2 X 2 matrix formed by

Associated minor for a removing the row 1 and column 1

S 6
3 9
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Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value
computed from the elements of the matrix

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

| ; Every element of this 3 X 3
C? matrix has an associated minor

The associated minor for a,, (represented by A,,)

is the determinant of the 2 X 2 matrix formed by

Associated minor for ai, removing the row 1 and column 2

4 6
7 9
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Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value
computed from the elements of the matrix

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

- Every element of this 3 X 3
@ matrix has an associated minor
A= |4 5| 6

7 89

The associated minor for a5 (represented by A;)

is the determinant of the 2 X 2 matrix formed by

Associated minor for a; removing the row 1 and column 3

Az = = |4 x8)—=(7T%x5)|=[32-35|=3

4 5
7 3
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Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value
computed from the elements of the matrix

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

Every element of this 3 X 3
matrix has an associated minor

1

The associated minor for a,; (represented by A, )

is the determinant of the 2 X 2 matrix formed by

Associated minor for ay, removing the row 2 and column 1

2
3

3
9
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Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value
computed from the elements of the matrix

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

The Determinant is calculated by the linear combination
of the product of the elements of the first row and their
associated minors with alternating signs

2 3
718 9
Alternating ‘+’ and ‘-* signs

Al =+ap Ay —apAp +apAg
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Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value
computed from the elements of the matrix

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

The Determinant is calculated by the linear combination
of the product of the elements of the first row and their
associated minors with alternating signs

2 3
7 (8 9
—ertwiha = sgn

Al =+1

oo N
\O© O\
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Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value
computed from the elements of the matrix

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

The Determinant is calculated by the linear combination
of the product of the elements of the first row and their
associated minors with alternating signs

1 2 3
A=5
7 8

Al =+1

oo N
O O\
N &~
O O\
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Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value
computed from the elements of the matrix

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

The Determinant is calculated by the linear combination
1 23 of the product of the elements of the first row and their
A= 1|4 5 6 associated minors with alternating signs

7 8] 9 _
—|Alternate a ‘+” sign

Al =+1

oo N
O O\
N &~
O O\

+ 3

< &
oo N
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Determinant of a Matrix

Determinant of a matrix A, denoted by |a| or det(A), is function that returns a scalar value
computed from the elements of the matrix

Cofactor Expansion (aka Laplace Expansion) to calculate the determinant

The Determinant is calculated by the linear combination
of the product of the elements of the first row and their

1 23

A= |4 5| 6 associated minors with alternating signs
7 8| 9
Al =+1 > 6 ) 4 6 + 3 4 5| 2 (5X9)—8X6)|=2[(4%x9) —(7x6)|+3]|(4x8)—(7%x5)|
8 9 79 T 8| —1145-48]—2]36-42]+3]32=35| = (1 x3)— (2x6)+ (3 x3)

=3-1249=0
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Inverse of a Matrix

Inverse of a matrix A, denoted byA_1 is @ matrix such that when multiplied by the original
results in the Identity Matrix.

AA T =A"1A =7

The inverse of a matrix is undefined for a non-square matrix
The inverse of a matrix is undefined for some square matrices

If a matrix has an inverse then it is said to be non-singular
If a matrix does not have an inverse then it is said to be singular

Inverse of a 2 X 2 matrix:

A — djp dpp A-1 = 1 r —dppl 1 dry —dypp
) Ay |A] | 741 Y1 |a1ayy — ariapp| |91 Y1
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Inverse of a Matrix

Inverse of a matrix A, denoted byA_1 is @ matrix such that when multiplied by the original

results in the Identity Matrix.

AA T =A"1A =7

Inverse of a 2 X 2 matrix:

a1 dypp
A =
dr1 dpy

A—l

A
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— - = —
If the determinant is zero then the

linverse of the matrix is undefined

-

—

-

1 ryy —dypp
—dy1 Ay

1 [ %% —6112]
o —a a
| ay1a07 — ay1a45 | 21 11
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Inverse of a Matrix

Inverse of a matrix A, denoted byA_1 is @ matrix such that when multiplied by the original
results in the Identity Matrix.

AA T =A"1A =1 Inverse of a 2 X 2 matrix is calculated by
swapping the diagonal elements, reversing
Inverse of a 2 X 2 matrix: the sign of the other two and then dividing by
qa.. a the determinant of A
A — [ 11 42
dr; dp

A-1 — 1 r —dppl 1 dry —dypp
LA 7% | lapan —ava,| |T%1 G
11922 — dp1412
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Inverse of a Matrix

Inverse of a matrix A, denoted byA_1 is @ matrix such that when multiplied by the original
results in the Identity Matrix.

AA T =A"1A =1 Inverse of a 2 X 2 matrix is calculated by
| swapping the diagonal elements, reversing
Inverse of a 2 X 2 matrix: the sign of the other two and then dividing by
1 0 the determinant of A
A =
B

A_lzllg —o]: 1 3 o L3 of_ |1 ©

Al [-2 1 1x3-2x0| |-2 1] 3[-2 1] [Z 3
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Inverse of a Matrix

Inverse of a matrix A, denoted byA‘1 is @ matrix such that when multiplied by the original
results in the Identity Matrix.

AA T =A"1A =1 Inverse of a 2 X 2 matrix is calculated by
| swapping the diagonal elements, reversing
Inverse of a 2 X 2 matrix: the sign of the other two and then dividing by
1 the determinant of A
A =
[—2 2

JEE [2 1] _ 1 [2 1] 1 [2 1]21[2 1]
Al [2 1] Jax2)—(=2x-D| [2 1] 2-2][2 1] o021

Determinant of A is zero. /

A~ lis undefined
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Related Tutorials & Textbooks

Logistic Regression (5

An introduction to Logistic Regression. A Logistic Regression model use used to predict a binary value (the dependent
variable) for one or more independent variables using a threshold to classify a probability.

Multiple Regression €7

Multiple regression extends the two dimensional linear model introduced in Simple Linear Regressionto k + 1
dimensions with one dependent variable, k independent variables and k+1 parameters.

Cost Function & Gradient Descent for Logistic Regression CJ

An introduction to the Cost function for Logistic Regression long with its partial derivative (the gradient vector). The
model parameters (B & W) are then optimized using Maximum Likelihood Estimation and Gradient Descent.

For a complete list of tutorials see:
https://arrsingh.com/ai-tutorials
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https://arrsingh-ai-tutorials.com/32-logistic-regression-derivative-cost-function.pdf
https://arrsingh.com/ai-tutorials
https://arrsingh-ai-tutorials.com/30-logistic-regression-fundamentals.pdf
https://arrsingh-ai-tutorials.com/12-multiple-regression.pdf

