Probability & Statistics Fundamentals

Rahul Singh rsingh@arrsingh.com

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Experiment (aka Trial)

Any procedure that can be repeated infinitely and has a well defined set of outcomes

Random Experiment (aka Trial)

If the experiment can have more than one possible outcome, then its a random experiment

Event

An event is the subset of the outcomes of an experiment

Example

Experiment: Flipping a fair coin (this is a random event) Outcomes: This experiment has two outcomes: Heads or Tails Event: The coin lands with heads on top

Experiments & Events

Random Variable

A numeric quantity associated with random events.

Random variable maps the set of possible outcomes (the domain) to a numeric quantity (the range)

Discrete Random Variable

A random variable with a finite, countable, distinct set of outcomes

Mathematical Representation Flipping a fair coin

$$X(\alpha) = \begin{cases} 1, & if \alpha = Heads \\ 0, & if \alpha = Tails \end{cases}$$

Random Variable

Two Possible Outcomes: Heads or Tails. Heads is mapped to 1 and Tails is mapped to 0

Random Variable

A numeric quantity associated with random events.

Random variable maps the set of possible outcomes (the domain) to a numeric quantity (the range)

Discrete Random Variable

A random variable with a finite, countable, distinct set of outcomes

Mathematical Representation Flipping a fair coin

$$X(\alpha) = \begin{cases} 1, & if \alpha = Heads \\ 0, & if \alpha = Tails \end{cases}$$

X is a discrete random variable

Random Variable

Two Possible Outcomes: Heads or Tails. Heads is mapped to 1 and Tails is mapped to 0

Mathematical Representation Flipping a fair coin

$$X(\alpha) = \begin{cases} 1, & if \alpha = Heads \\ 0, & if \alpha = Tails \end{cases}$$

Probability

Mathematical Representation Flipping a fair coin

$$X(\alpha) = \begin{cases} 1, & if \alpha = Heads \\ 0, & if \alpha = Tails \end{cases}$$
$$P(X = 1) = \frac{1}{2} = 0.5$$

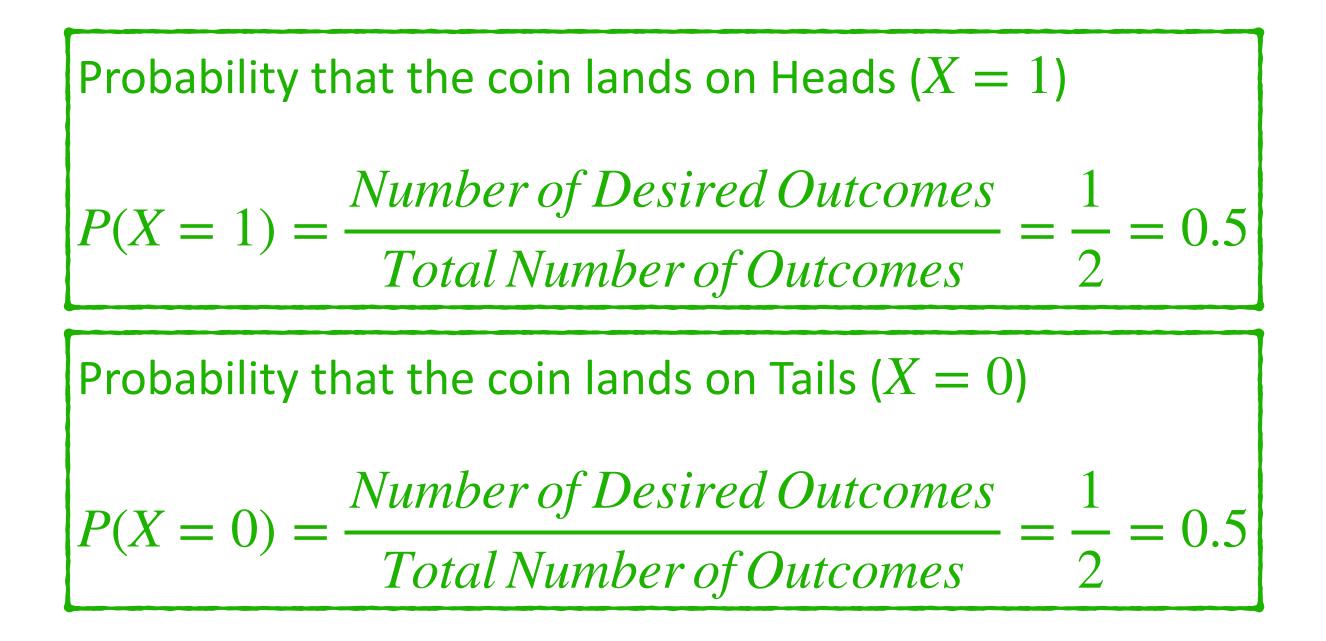
Probability

Mathematical Representation Flipping a fair coin

$$X(\alpha) = \begin{cases} 1, & if \alpha = Heads \\ 0, & if \alpha = Tails \end{cases}$$
$$P(X = 1) = \frac{1}{2} = 0.5$$
$$P(X = 0) = \frac{1}{2} = 0.5$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Probability



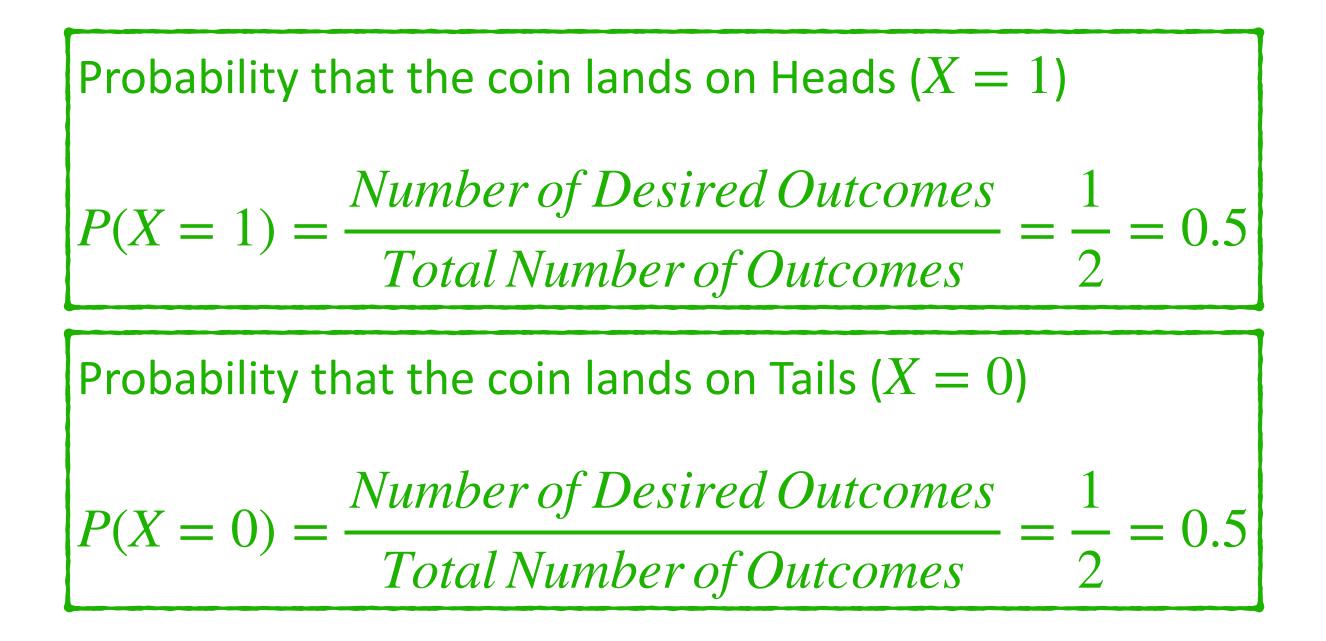
Mathematical Representation Flipping a fair coin

$$X(\alpha) = \begin{cases} 1, & if \alpha = Heads \\ 0, & if \alpha = Tails \end{cases}$$
$$P(X = 1) = \frac{1}{2} = 0.5$$
$$P(X = 0) = \frac{1}{2} = 0.5$$

We can plot these probabilities on a graph

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Probability



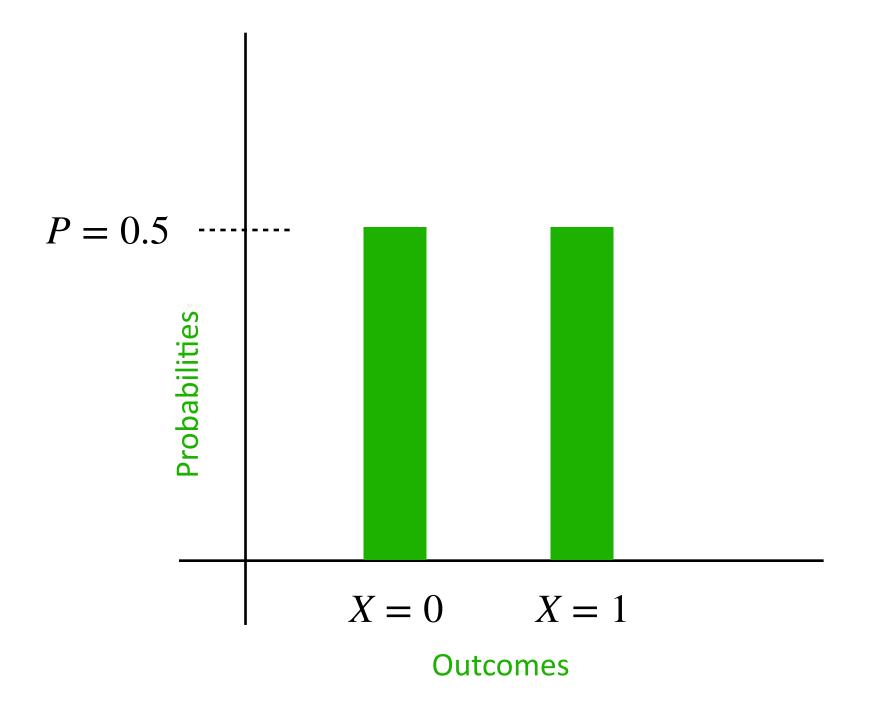
Mathematical Representation Flipping a fair coin

$$X(\alpha) = \begin{cases} 1, & if \alpha = Heads \\ 0, & if \alpha = Tails \end{cases}$$
$$P(X = 1) = \frac{1}{2} = 0.5$$
$$P(X = 0) = \frac{1}{2} = 0.5$$

We can plot these probabilities on a graph

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

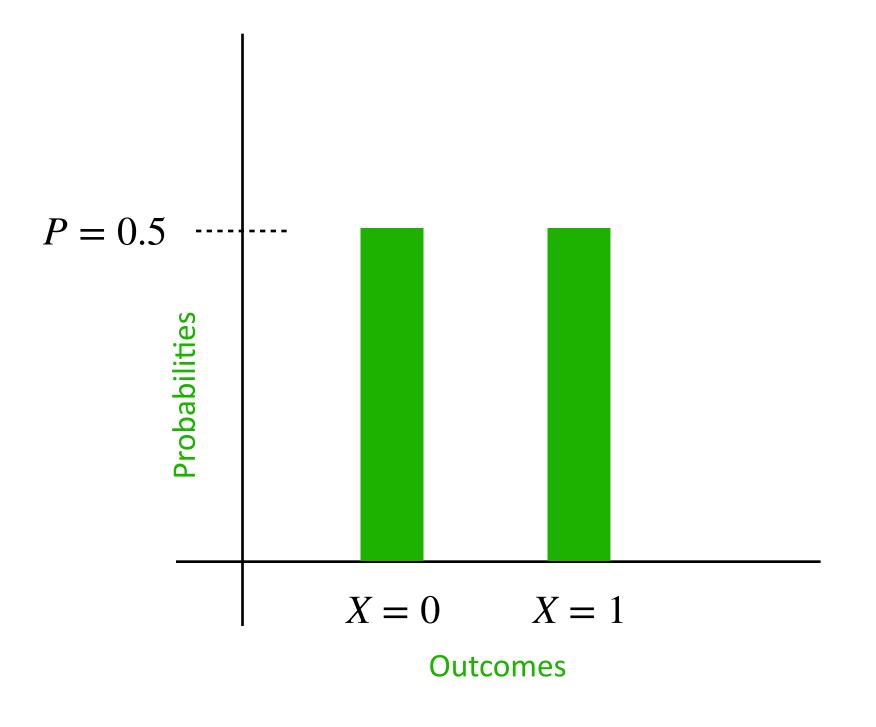
Probability



Mathematical Representation Flipping a fair coin

$$X(\alpha) = \begin{cases} 1, & if \alpha = Heads \\ 0, & if \alpha = Tails \end{cases}$$

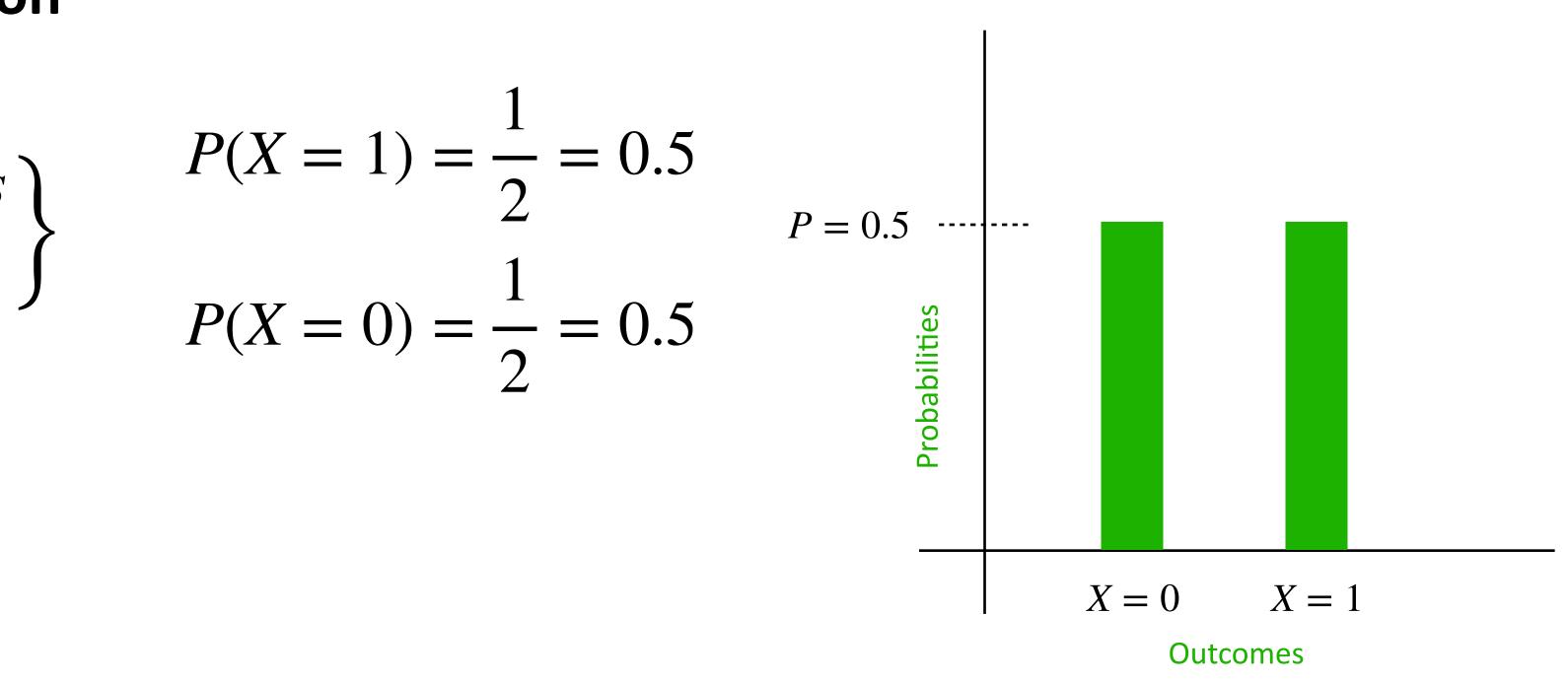
Probability Mass Function



Mathematical Representation Flipping a fair coin

$$X(\alpha) = \begin{cases} 1, & if \alpha = Heads \\ 0, & if \alpha = Tails \end{cases} \qquad P(X = 1)$$
$$P(X = 0)$$

Probability Mass Function



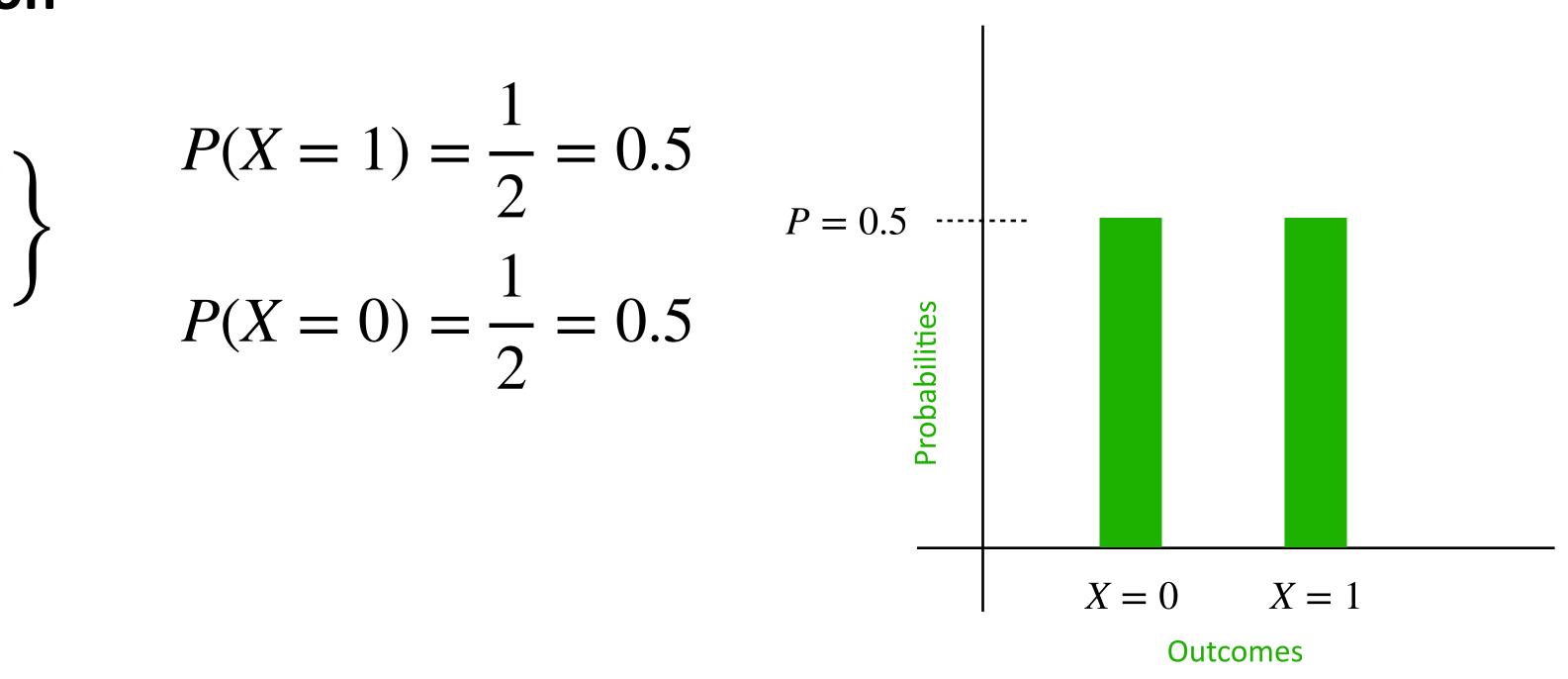
Mathematical Representation Flipping a fair coin

$$X(\alpha) = \begin{cases} 1, & if \alpha = Heads \\ 0, & if \alpha = Tails \end{cases} \qquad P(X = 1)$$

Probability Mass Function Flipping a fair coin

$$f(x) = \begin{cases} 0.5, & if \ x = 1 \\ 0.5, & if \ x = 0 \end{cases}$$

Probability Mass Function

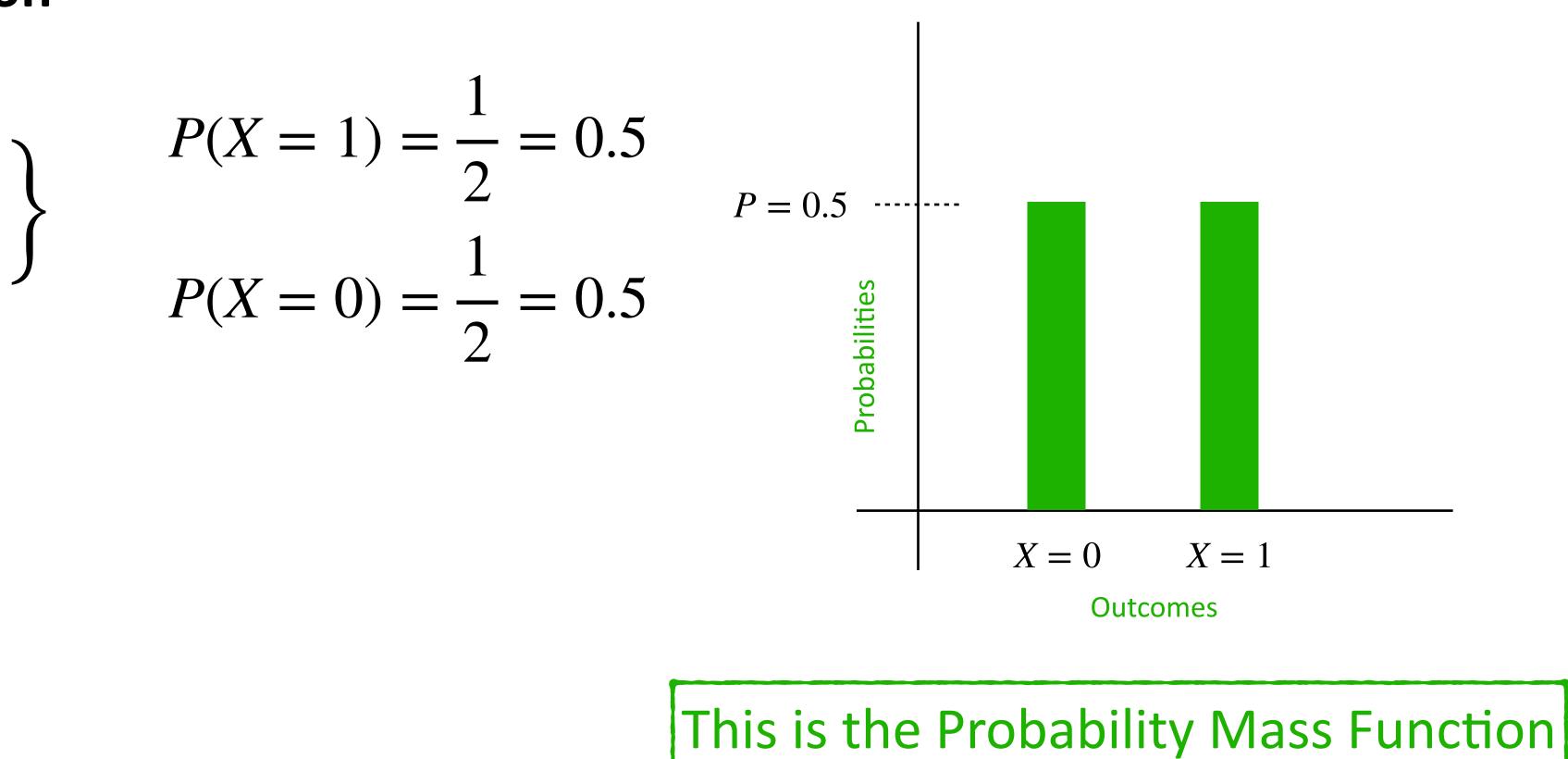


Mathematical Representation Flipping a fair coin

$$X(\alpha) = \begin{cases} 1, & if \alpha = Heads \\ 0, & if \alpha = Tails \end{cases} \qquad P(X = 1)$$

Probability Mass Function Flipping a fair coin

$$f(x) = \begin{cases} 0.5, & if \ x = 1 \\ 0.5, & if \ x = 0 \end{cases}$$



Mathematical Representation Flipping a fair coin

$$X(\alpha) = \begin{cases} 1, & if \alpha = Heads \\ 0, & if \alpha = Tails \end{cases} \qquad P(X = 1)$$

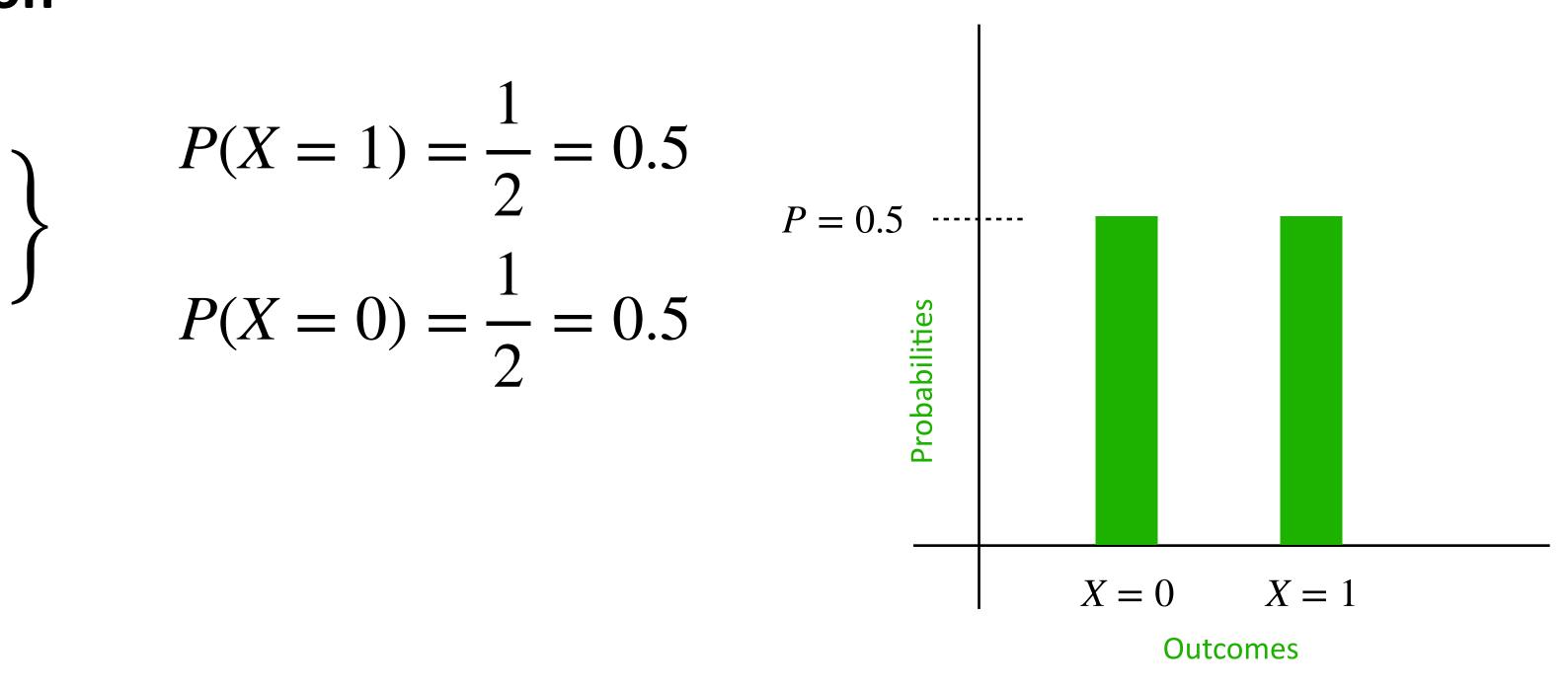
Probability Mass Function Flipping a fair coin

$$f(x) = \begin{cases} 0.5, & if x = 1 \\ 0.5, & if x = 0 \end{cases}$$

The Probability Mass Function gives the probability that a discrete random variable is equal to some value

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Probability Mass Function



Mathematical Representation

Rolling a six sided fair die

Probability Mass Function

Mathematical Representation Rolling a six sided fair die

$$X(\alpha) = \begin{cases} 1, & if \alpha = One \\ 2, & if \alpha = Two \\ 3, & if \alpha = Three \\ 4, & if \alpha = Four \\ 5, & if \alpha = Five \\ 6, & if \alpha = Six \end{cases}$$

Probability Mass Function

Mathematical Representation Rolling a six sided fair die $P(X = 1) = \frac{1}{6} = 0.1667$

$$X(\alpha) = \begin{cases} 1, & if \alpha = One \\ 2, & if \alpha = Two \\ 3, & if \alpha = Three \\ 4, & if \alpha = Four \\ 5, & if \alpha = Five \\ 6, & if \alpha = Six \end{cases} \qquad P(X = 2) = \\ P(X = 3) = \\ P(X = 4) = \\ P(X = 5) = \\ P(X = 6) =$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

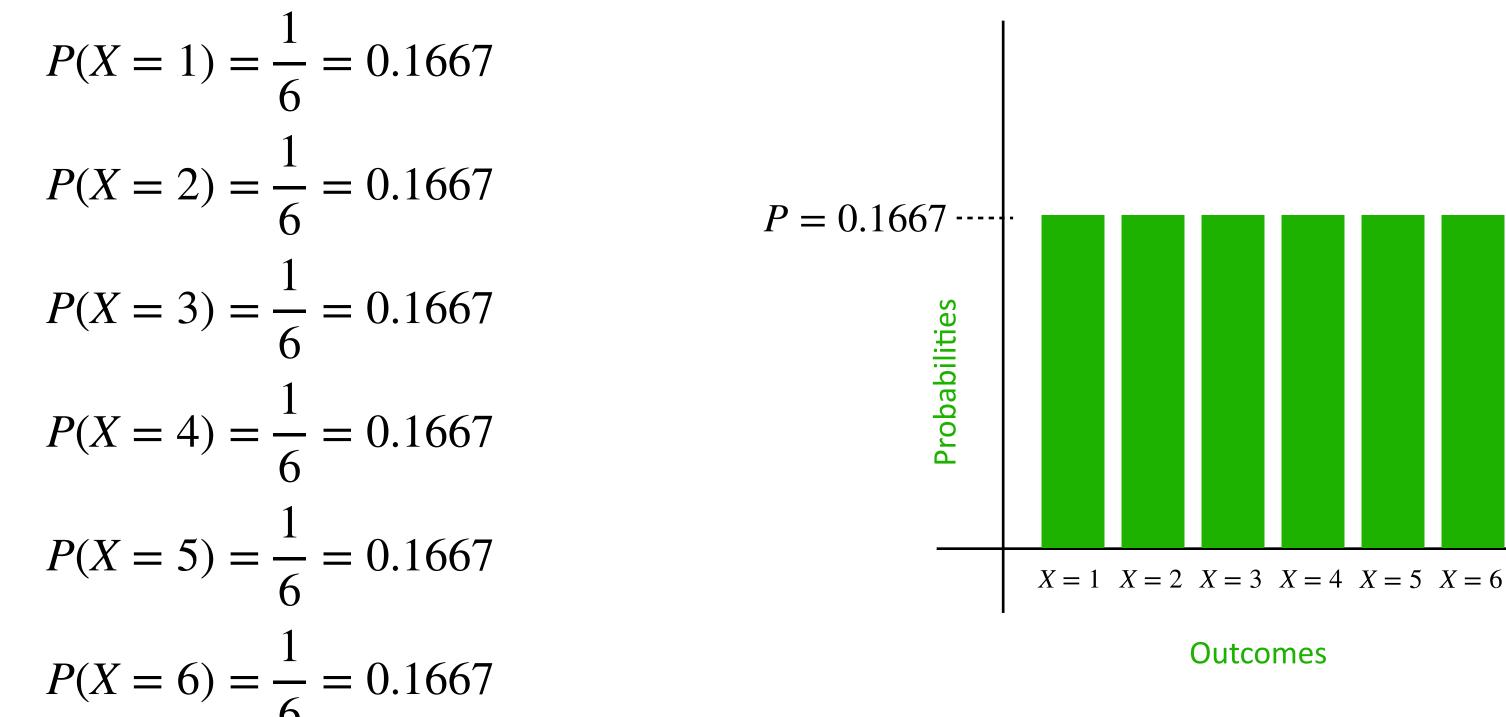
Probability Mass Function

```
\frac{1}{6} = 0.1667
                   \frac{1}{6} = 0.1667
                   \frac{1}{6} = 0.1667
                   \frac{1}{6} = 0.1667
P(X=6) = \frac{1}{6} = 0.1667
```


Mathematical Representation Rolling a six sided fair die

$$X(\alpha) = \begin{cases} 1, & if \alpha = One \\ 2, & if \alpha = Two \\ 3, & if \alpha = Three \\ 4, & if \alpha = Four \\ 5, & if \alpha = Five \\ 6, & if \alpha = Six \end{cases} \qquad P(X = 2) = \\ P(X = 3) = \\ P(X = 4) = \\ P(X = 5) = \\ P(X = 6) =$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

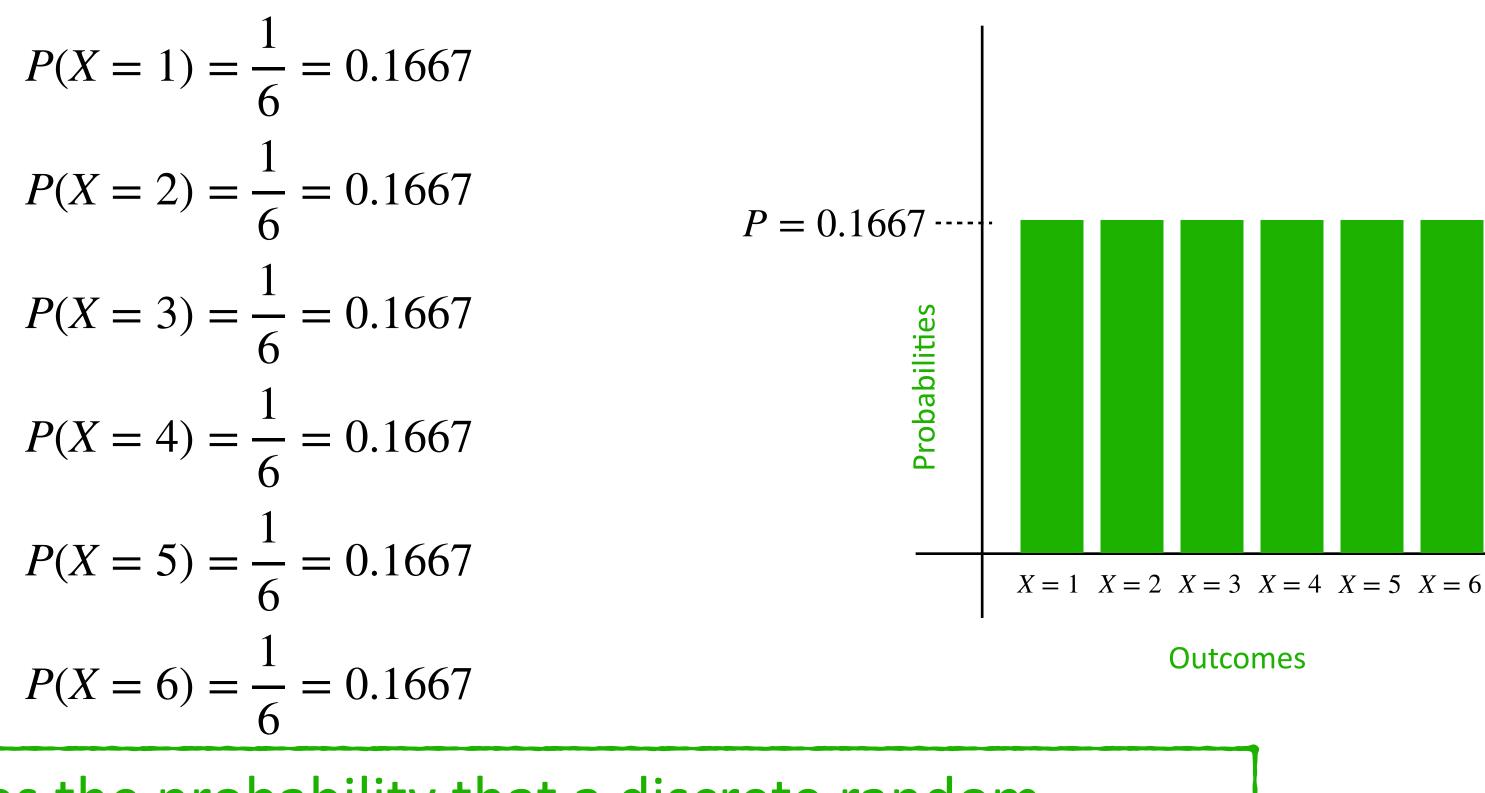


Mathematical Representation Rolling a six sided fair die

$$X(\alpha) = \begin{cases} 1, & if \alpha = One \\ 2, & if \alpha = Two \\ 3, & if \alpha = Three \\ 4, & if \alpha = Four \\ 5, & if \alpha = Five \\ 6, & if \alpha = Six \end{cases} \qquad P(X = 2) = \\ P(X = 3) = \\ P(X = 4) = \\ P(X = 5) = \\ P(X = 6) = \end{cases}$$

The Probability Mass Function gives the probability that a discrete random variable is equal to some value

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

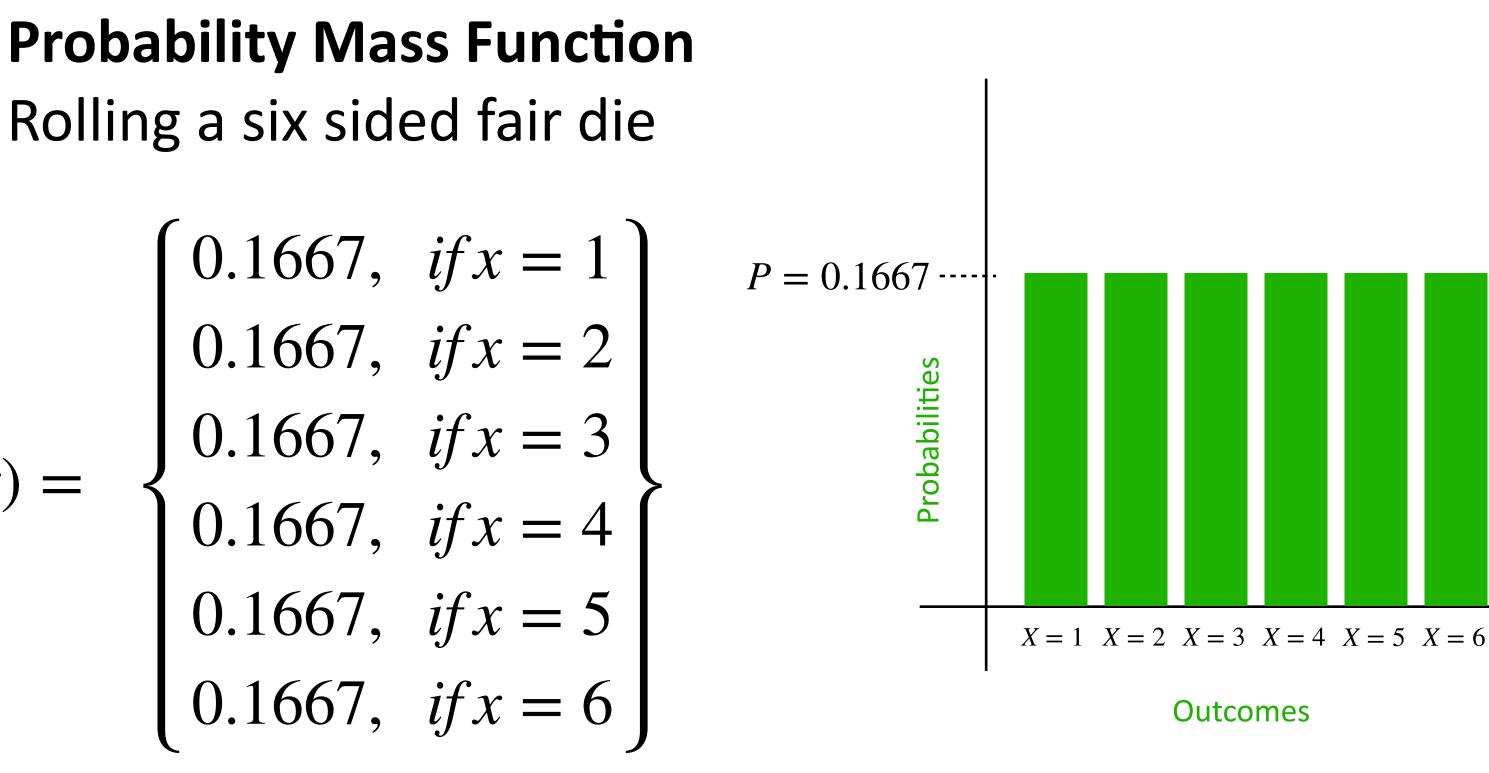


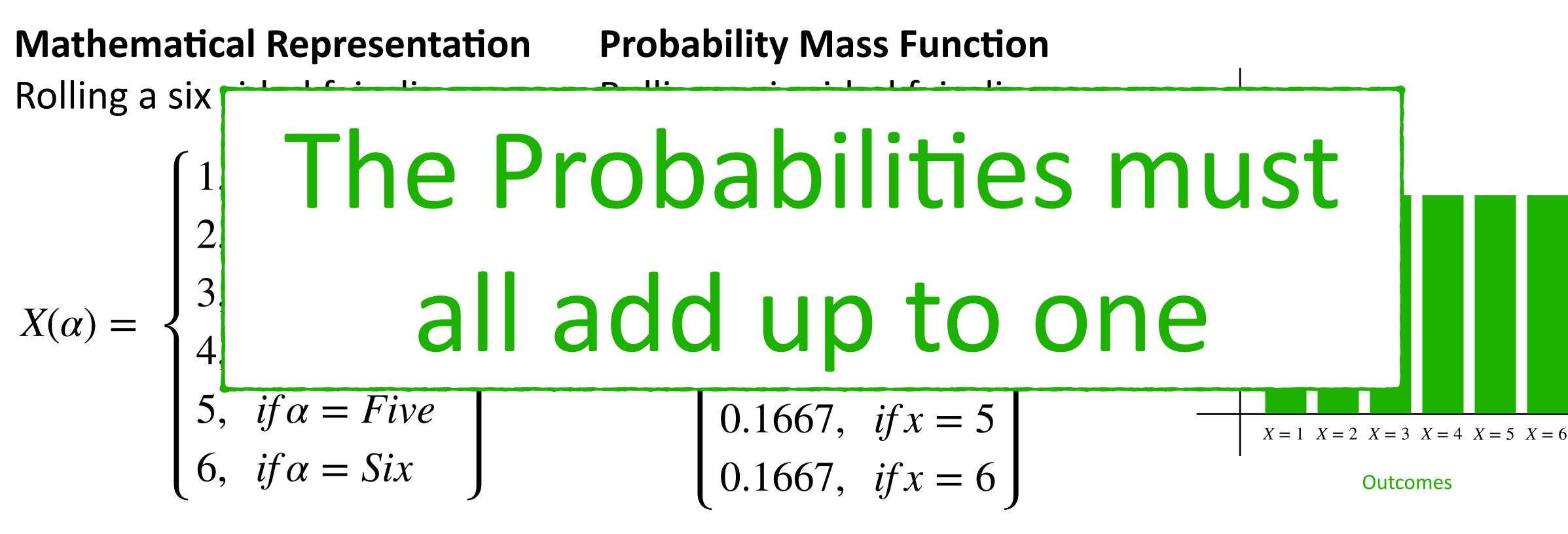
Mathematical Representation Rolling a six sided fair die

$$X(\alpha) = \begin{cases} 1, & if \alpha = One \\ 2, & if \alpha = Two \\ 3, & if \alpha = Three \\ 4, & if \alpha = Four \\ 5, & if \alpha = Five \\ 6, & if \alpha = Six \end{cases} \qquad f(x) = \begin{cases} 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \end{cases}$$

The Probability Mass Function gives the probability that a discrete random variable is equal to some value

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)





The Probability Mass Function gives the probability that a discrete random variable is equal to some value

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

$$X(\alpha) = \begin{cases} 1, & if \alpha = One \\ 2, & if \alpha = Two \\ 3, & if \alpha = Three \\ 4, & if \alpha = Four \\ 5, & if \alpha = Five \\ 6, & if \alpha = Six \end{cases}$$

 $f(x) = \begin{cases} 0.1667, & \text{if } x = 1\\ 0.1667, & \text{if } x = 2\\ 0.1667, & \text{if } x = 3\\ 0.1667, & \text{if } x = 3\\ 0.1667, & \text{if } x = 4\\ 0.1667, & \text{if } x = 5\\ 0.1667, & \text{if } x = 6 \end{cases}$

Cumulative Distribution Function

- Rolling a six sided fair die

$$X(\alpha) = \begin{cases} 1, & if \alpha = One \\ 2, & if \alpha = Two \\ 3, & if \alpha = Three \\ 4, & if \alpha = Four \\ 5, & if \alpha = Five \\ 6, & if \alpha = Six \end{cases}$$

 $\begin{cases} f(x) = \begin{cases} 0.1667, & if x = 1\\ 0.1667, & if x = 2\\ 0.1667, & if x = 3\\ 0.1667, & if x = 4\\ 0.1667, & if x = 5\\ 0.1667, & if x = 6 \end{cases}$

Probability of rolling a 2 or less:

$$P(X = 1) + P(X = 2) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3} = 0.3333$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Cumulative Distribution Function

- Rolling a six sided fair die

$$X(\alpha) = \begin{cases} 1, & if \alpha = One \\ 2, & if \alpha = Two \\ 3, & if \alpha = Three \\ 4, & if \alpha = Four \\ 5, & if \alpha = Five \\ 6, & if \alpha = Six \end{cases} f(x)$$

 $x) = \begin{cases} 0.1667, & if x = 1\\ 0.1667, & if x = 2\\ 0.1667, & if x = 3\\ 0.1667, & if x = 4\\ 0.1667, & if x = 5\\ 0.1667, & if x = 6 \end{cases}$

Probability of rolling a 2 or less:

$$P(X = 1) + P(X = 2) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3} = 0.3333$$

Probability of rolling a 6 or less:

P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 5)

Cumulative Distribution Function

- Rolling a six sided fair die

$$P(X=6) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{6} = \frac{1}{6}$$

$$X(\alpha) = \begin{cases} 1, & if \alpha = One \\ 2, & if \alpha = Two \\ 3, & if \alpha = Three \\ 4, & if \alpha = Four \\ 5, & if \alpha = Five \\ 6, & if \alpha = Six \end{cases} f(x)$$

Probability of rolling a 2 or less:

$$P(X = 1) + P(X = 2) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3} = 0.3333$$

Probability of rolling a 6 or less:

P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 5)

Cumulative Distribution Function

Probability Mass Function

Rolling a six sided fair die

 $x) = \begin{cases} 0.1667, & if x = 1 \\ 0.1667, & if x = 2 \\ 0.1667, & if x = 3 \\ 0.1667, & if x = 4 \\ 0.1667, & if x = 5 \\ 0.1667, & if x = 6 \end{cases} \xrightarrow{P = 1 \text{ magenting}}$

Outcomes

X = 1 X = 2 X = 3 X = 4 X = 5 X = 6

$$P(X = 6) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{6} = 1$$

A random variable with an infinite, uncountable set of outcomes

Continuous Random Variable

A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

Continuous Random Variable

Infinite Outcomes: Height can be any value from 0 to infinity.

A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

A Continuous Random Variable doesn't have a Probability Mass Function because there are infinite outcomes.

Instead, a continuous random variable has a Probability Density Function (PDF)

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Continuous Random Variable

Infinite Outcomes: Height can be any value from 0 to infinity.

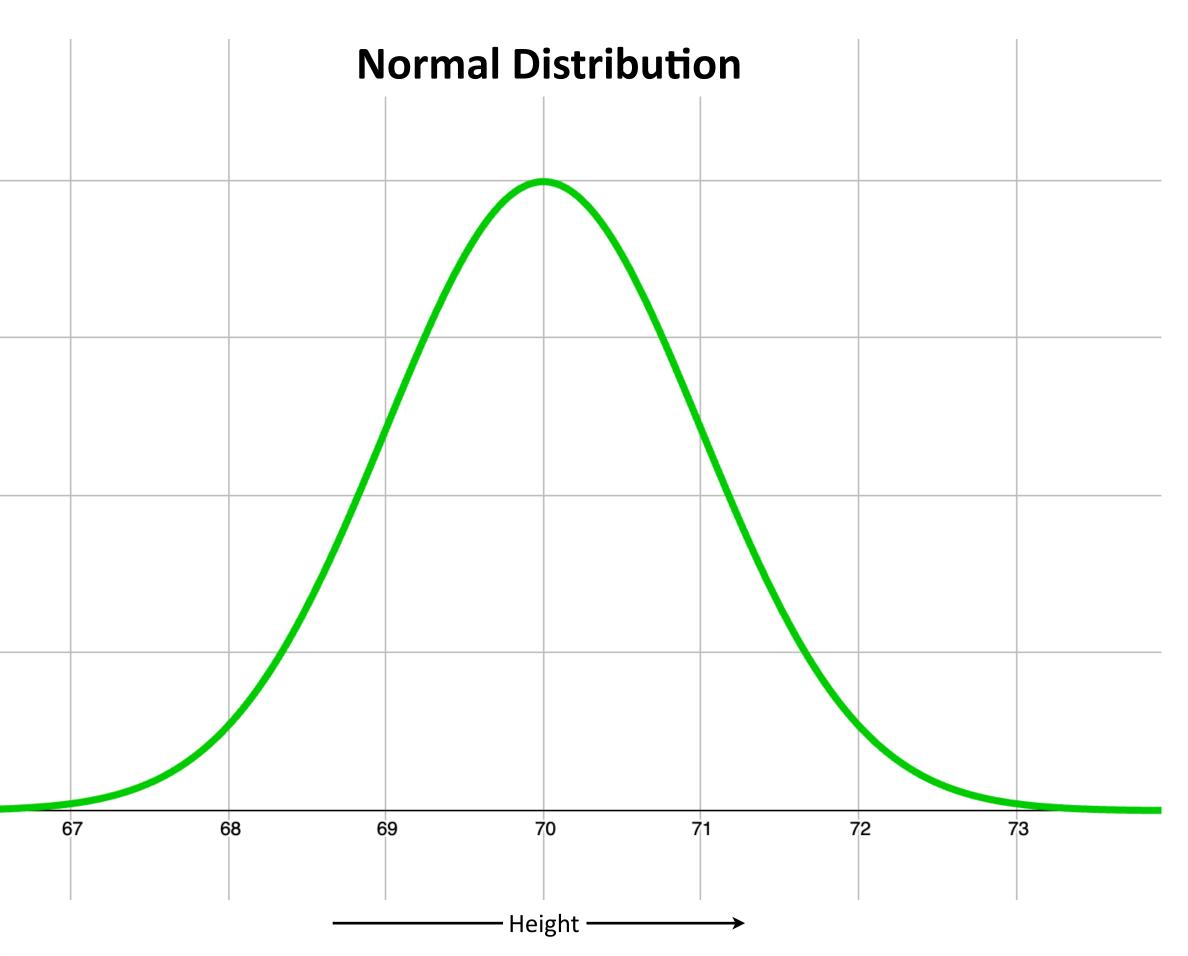
A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

The Probability Density Function returns the probability of an outcome within a certain range

Probability Density Function

Probability Density



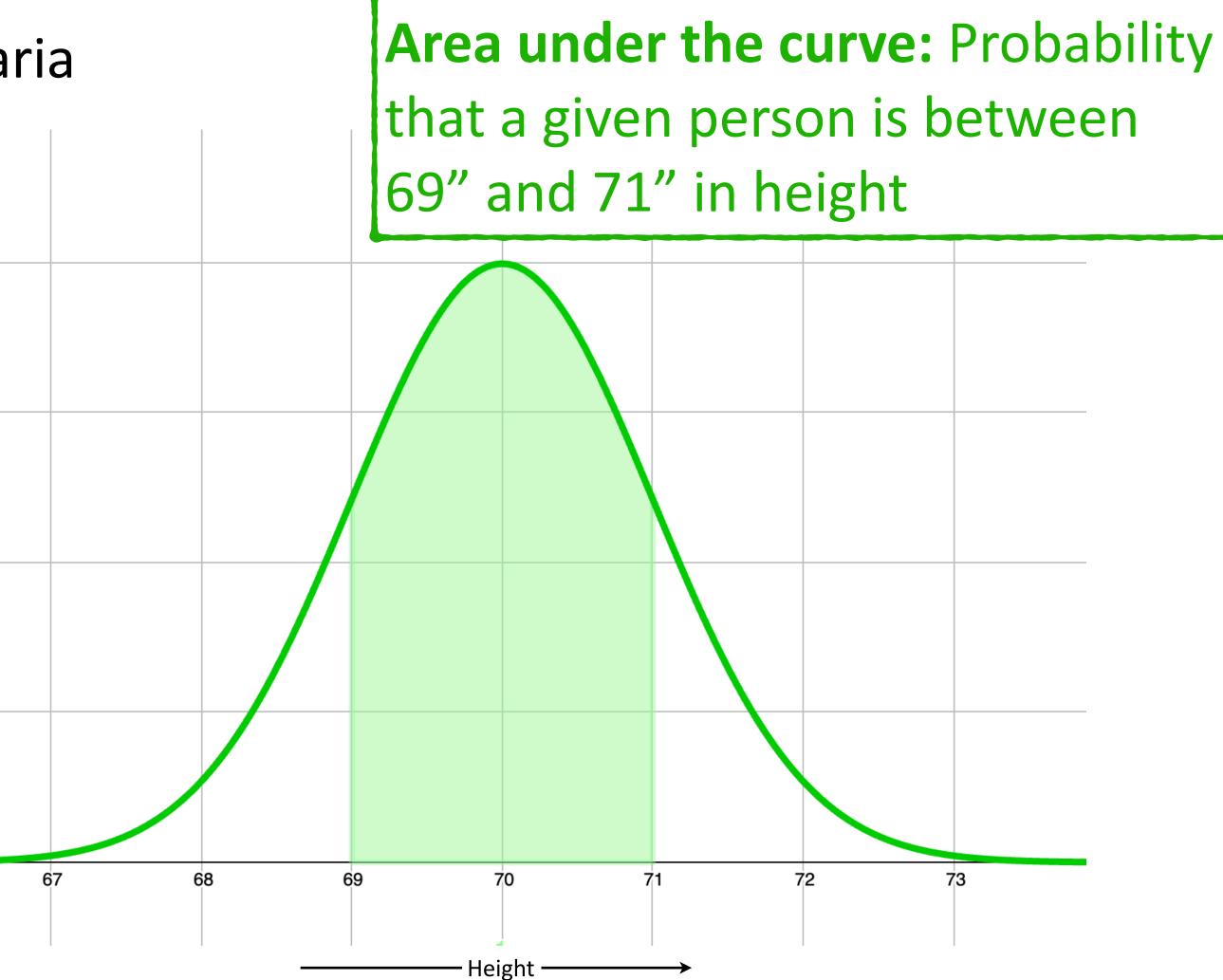
A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

²robability Density

The Probability Density Function returns the probability of an outcome within a certain range

Probability Density Function



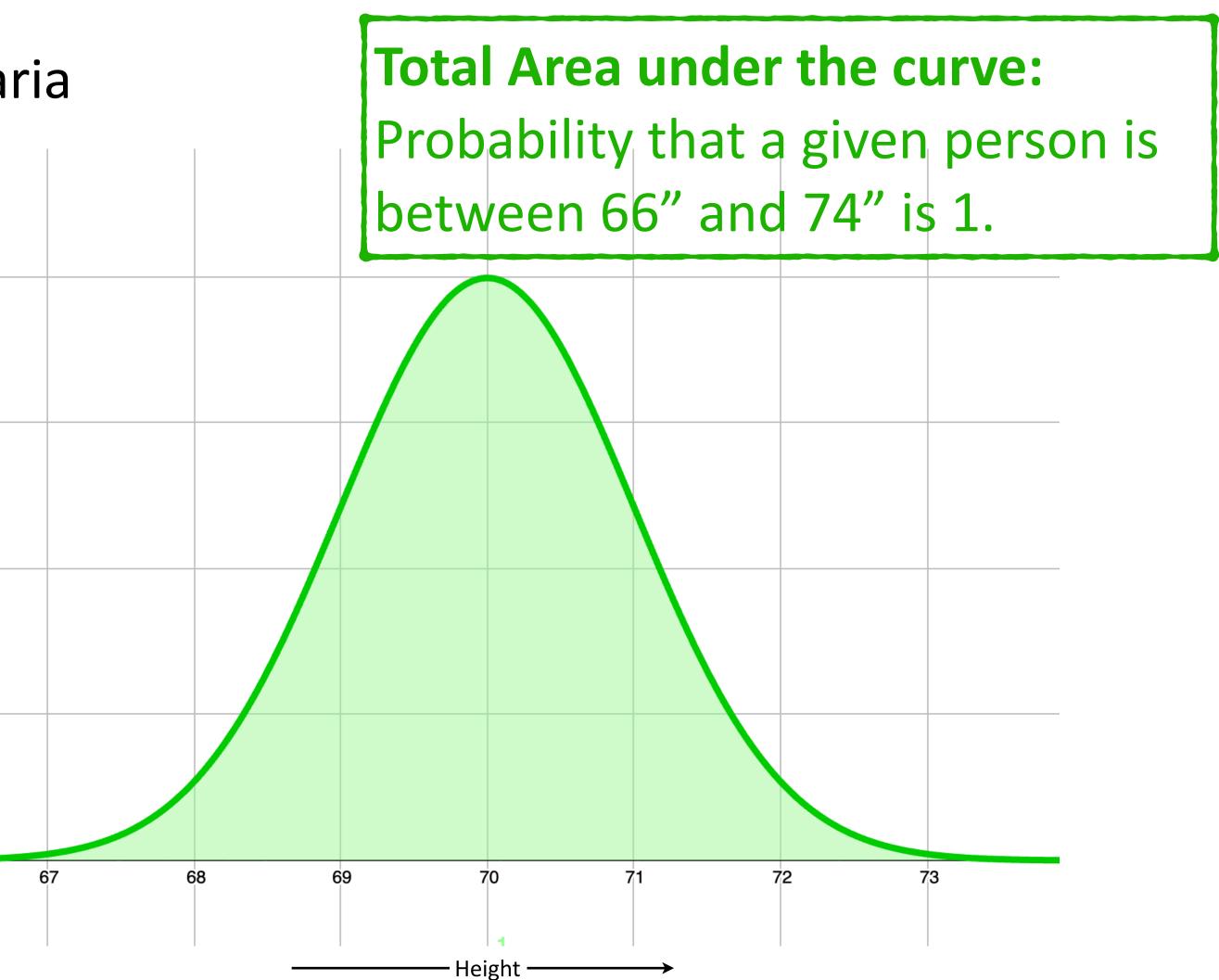
A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

²robability Density

The Probability Density Function returns the probability of an outcome within a certain range

Probability Density Function



A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

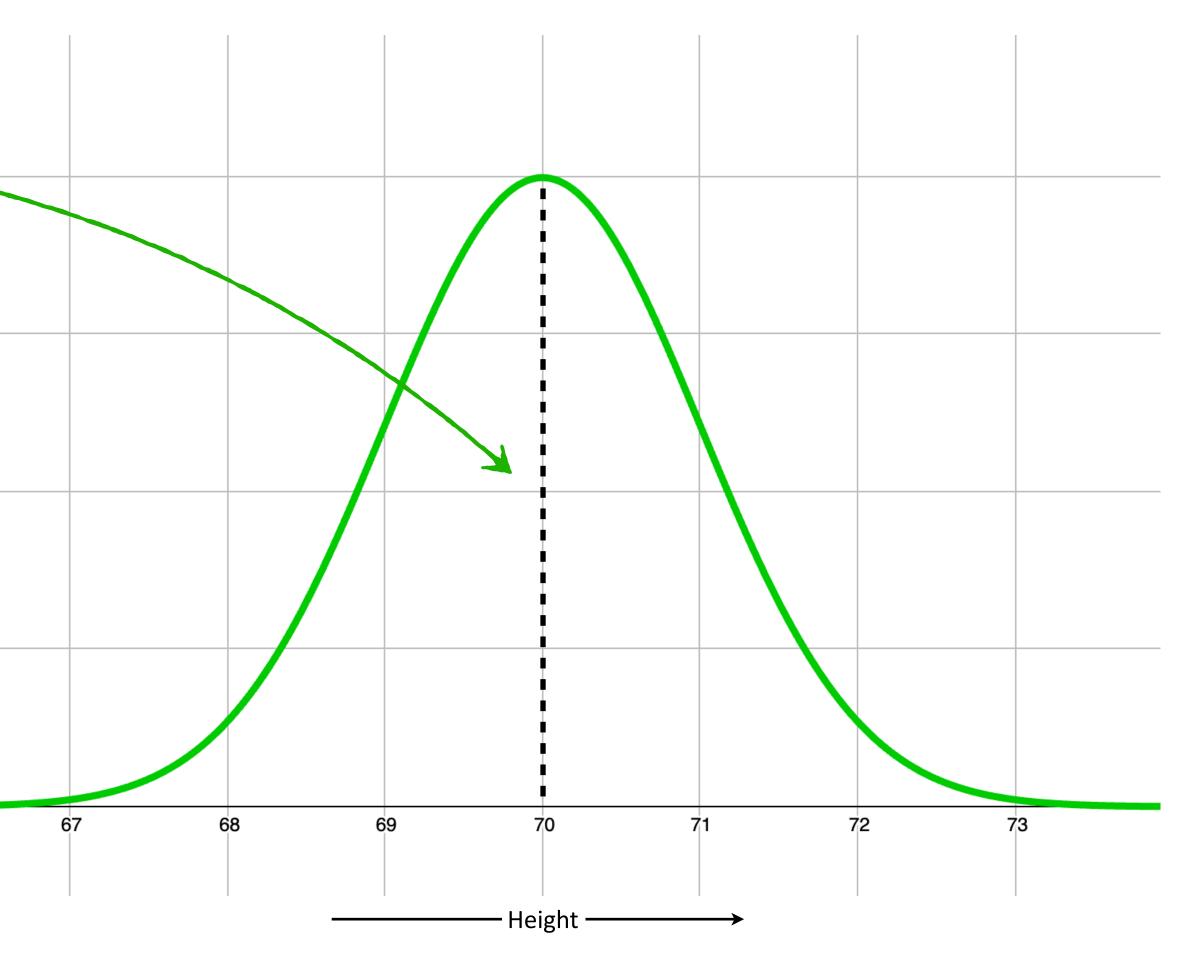
Mean (μ) of the distribution

The Average Height of a citizen of Bulgaria is 70"

The Probability Density Function returns the probability of an outcome within a certain range

Probability Density Function

robability Density



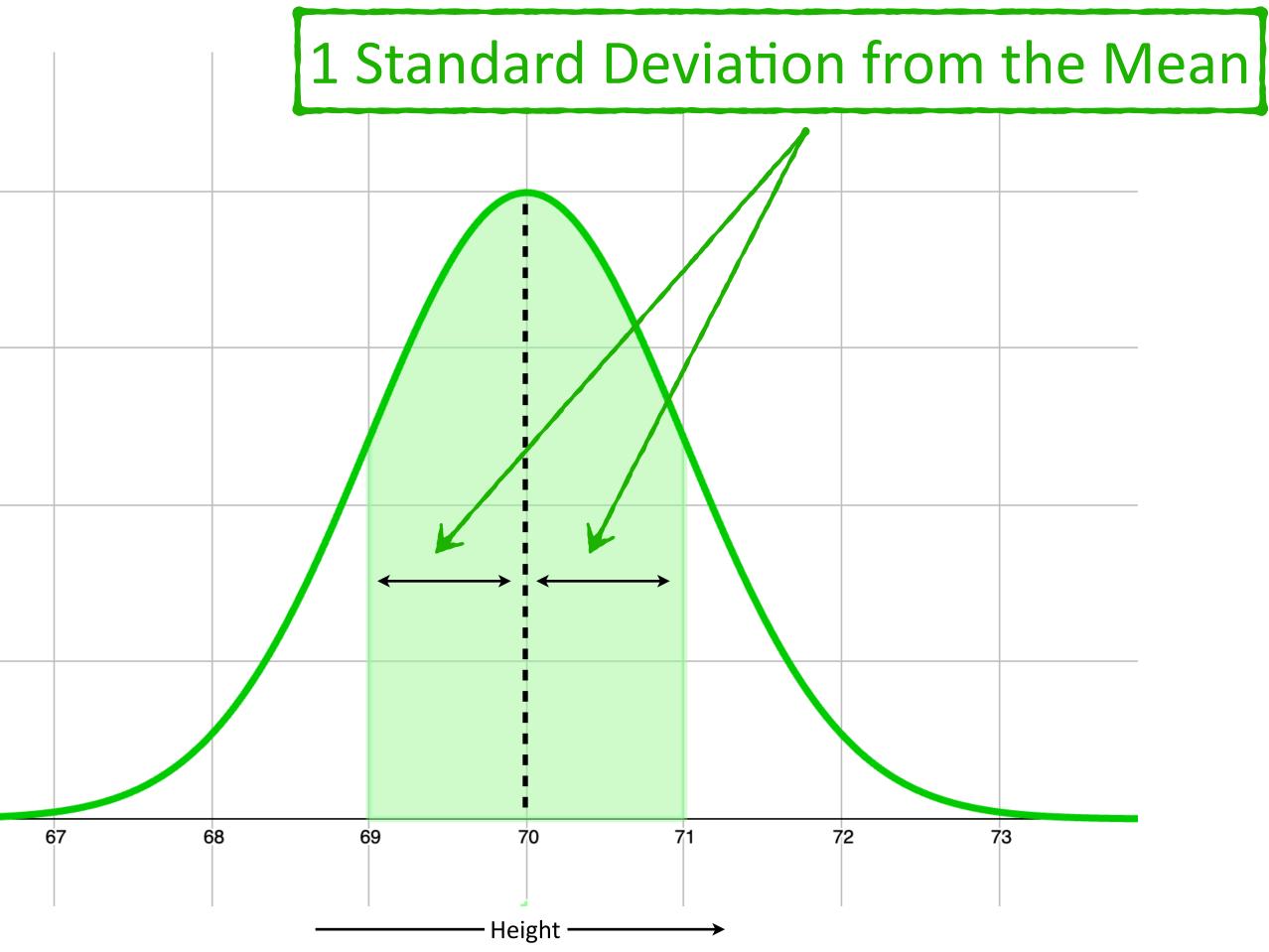
A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

The Probability Density Function returns the probability of an outcome within a certain range

Probability Density Function

Probability Density



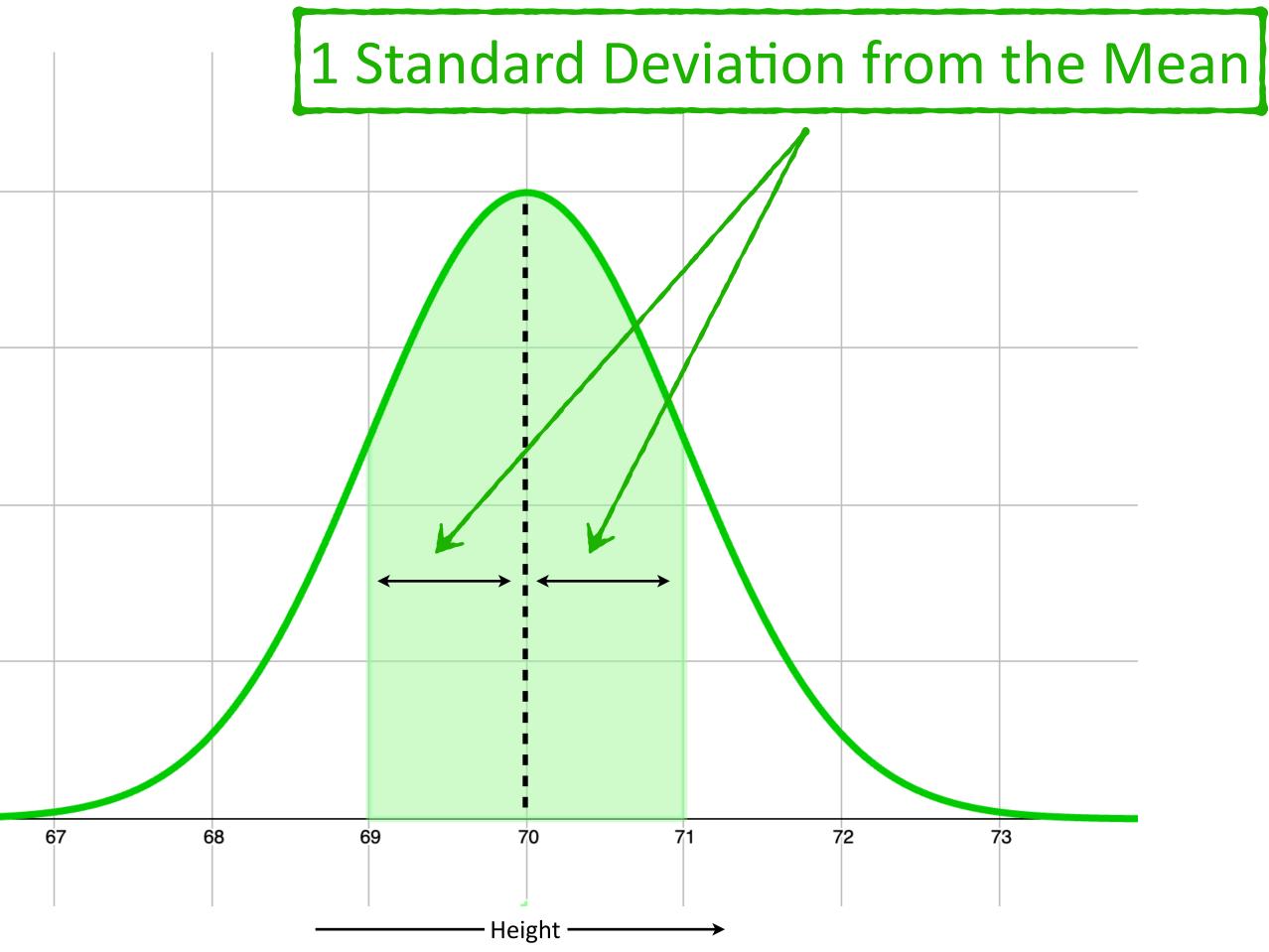
A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

Standard Deviation (σ): A measure Probability Density of distance of the data from the mean.

The Probability Density Function returns the probability of an outcome within a certain range

Probability Density Function



A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

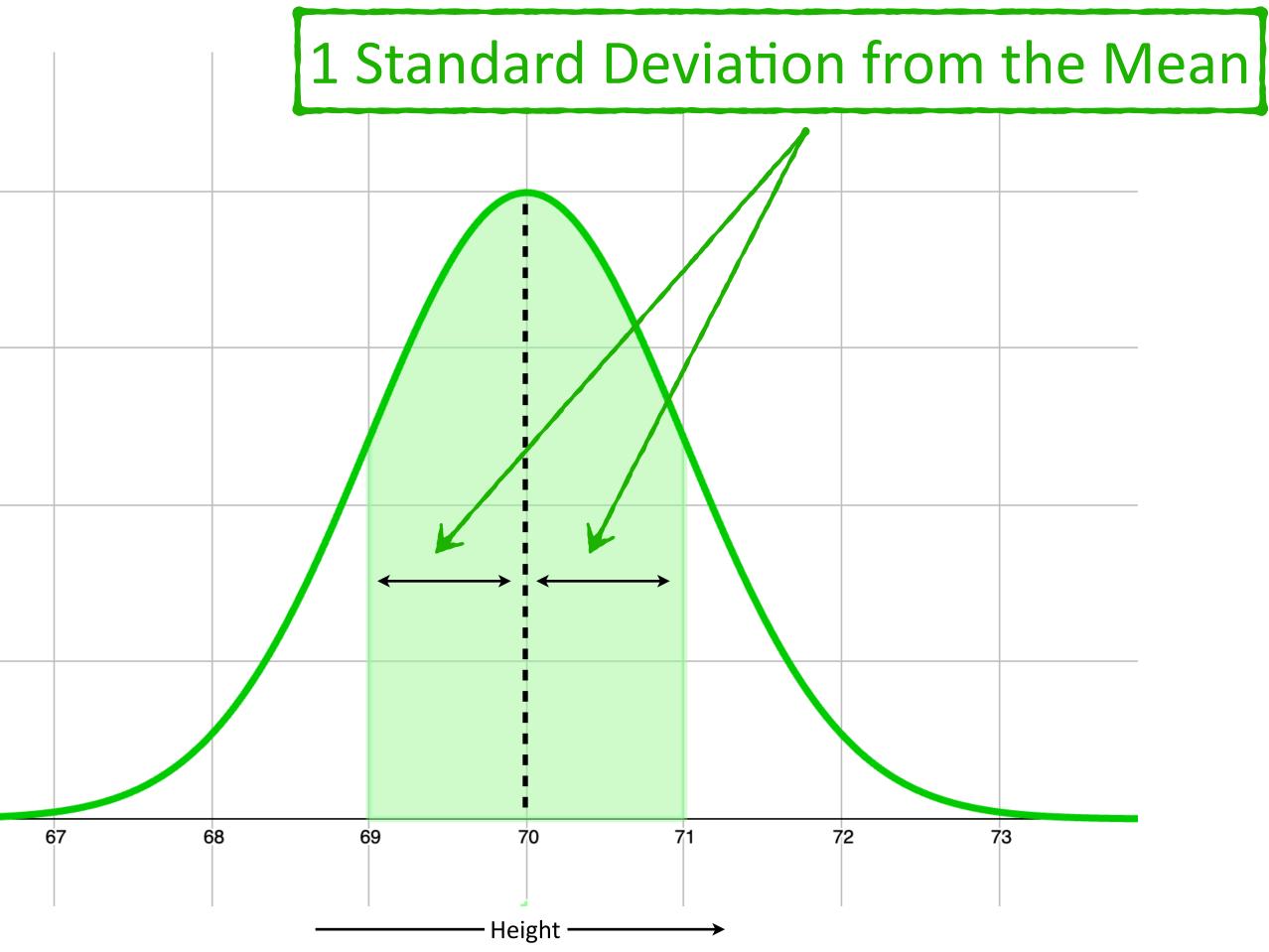
Variance (σ^2) is the square of the Standard Deviation (σ)

Standard Deviation (σ): A measure of distance of the data from the mean.

The Probability Density Function returns the probability of an outcome within a certain range

Probability Density Function

Probability Density



A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

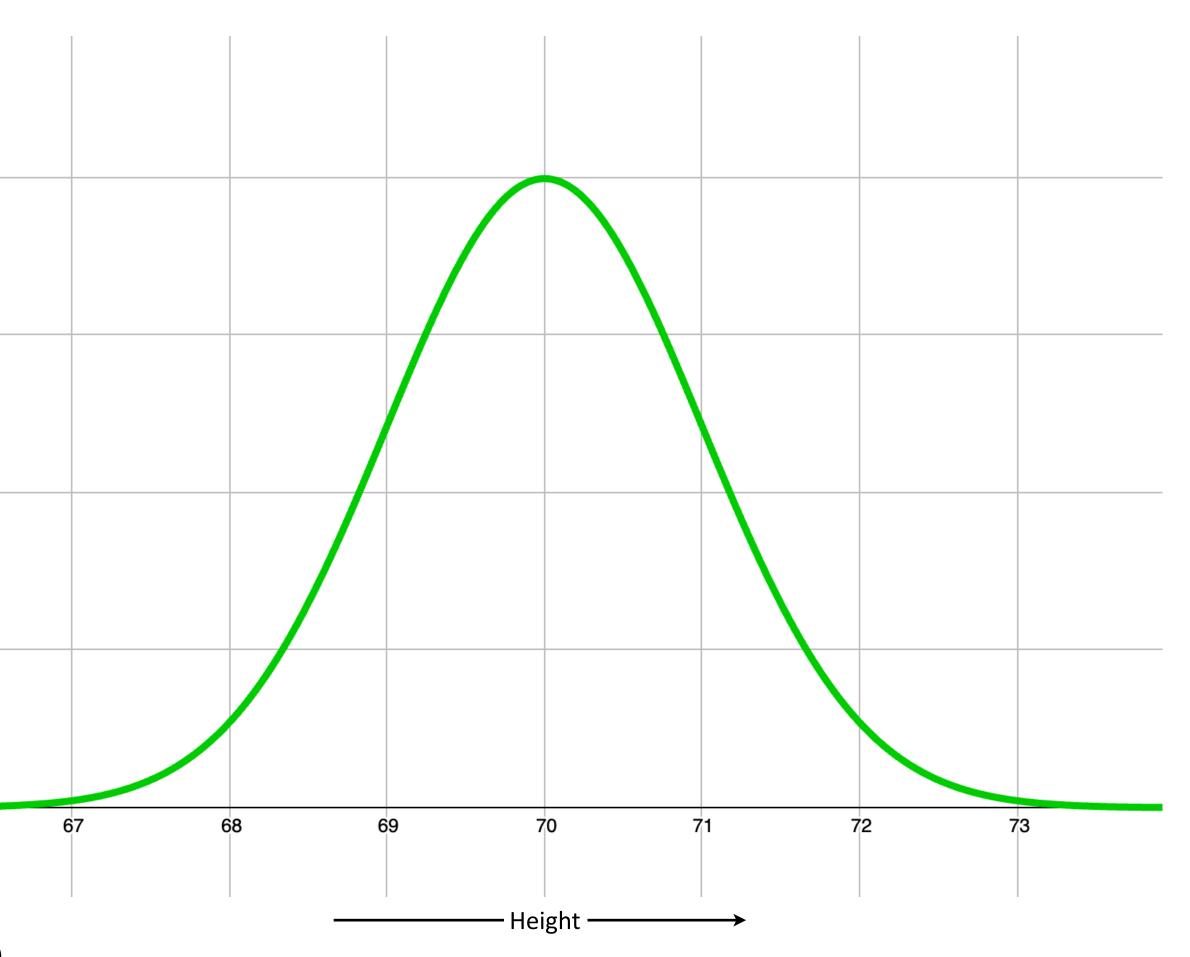
Mean = μ Variance = σ^2

Mean & Variance are the two parameters that determine the shape and position the normal distribution

Copyright (c) 2025, <u>Rahul Singh</u>, licensed under CC BY-NC-SA 4.0 (<u>https://creativecommons.org/licenses/by-nc-sa/4.0/</u>)

Probability Density Function

Probability Density



A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

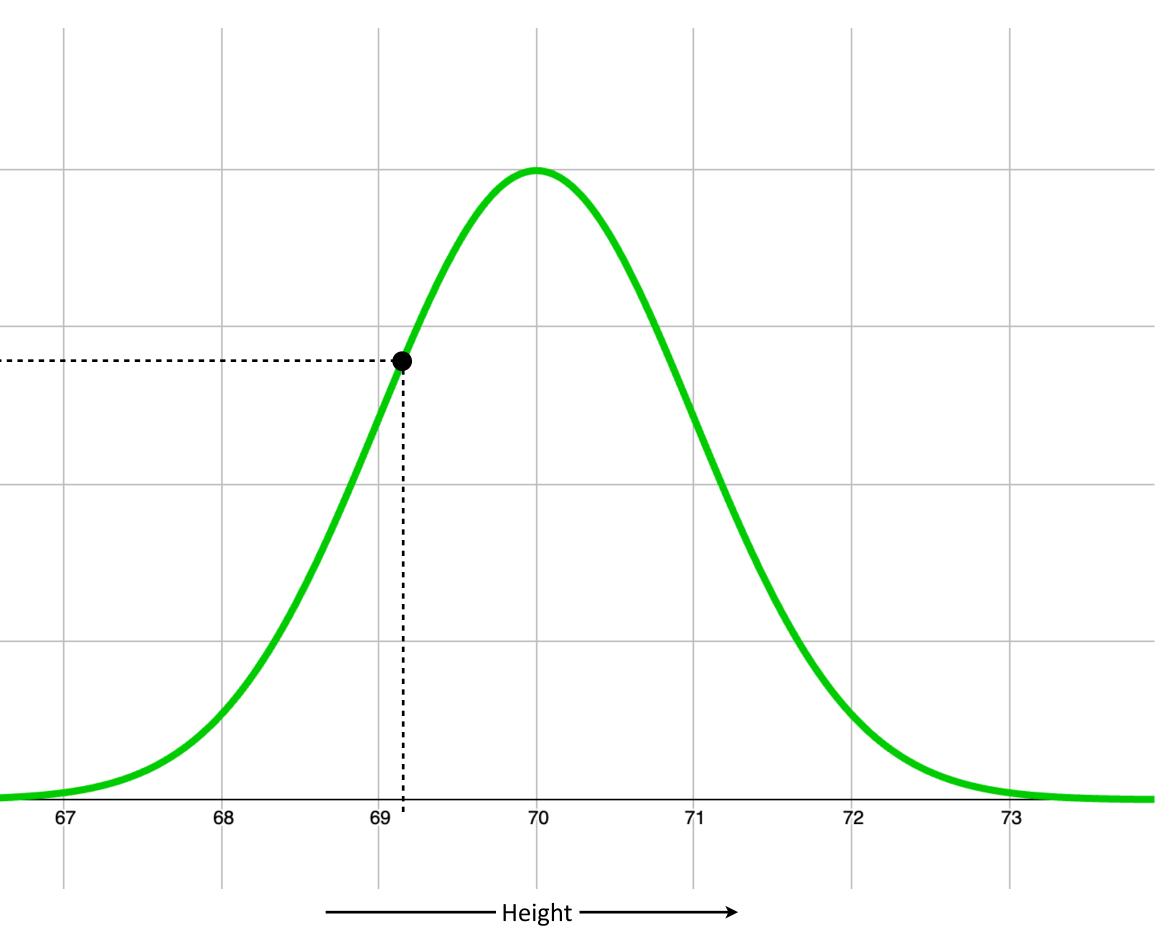
Mean = μ Variance = σ^2

Likelihood is not Probability

A single point on the curve: Likelihood of observing a person of that specific height for this specific distribution ($\mu = 70, \sigma^2 = 1$)

Probability Density Function

obability



A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

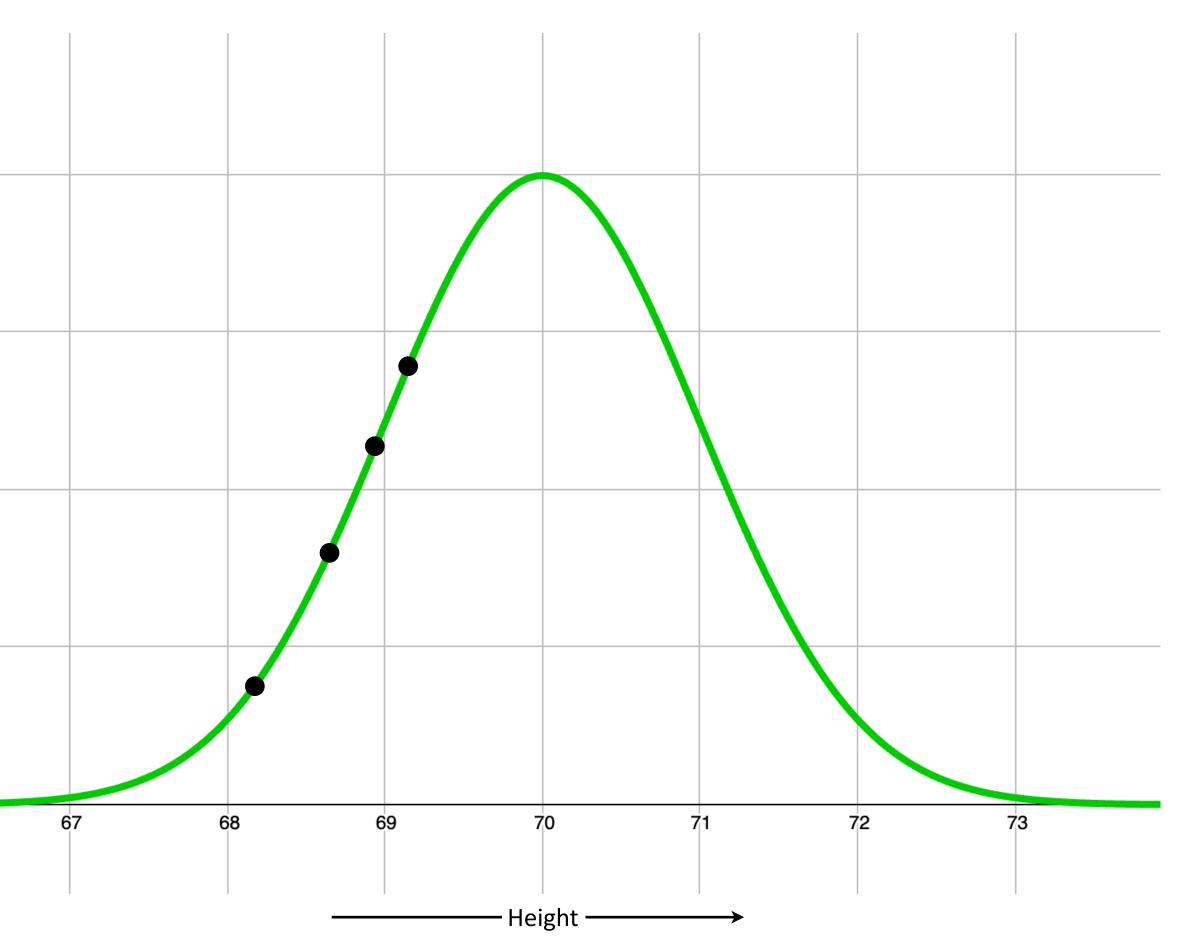
Mean = μ Variance = σ^2

Multiple points on the curve: Multiply the likelihoods of every point

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Probability Density Function

Probability Density



A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

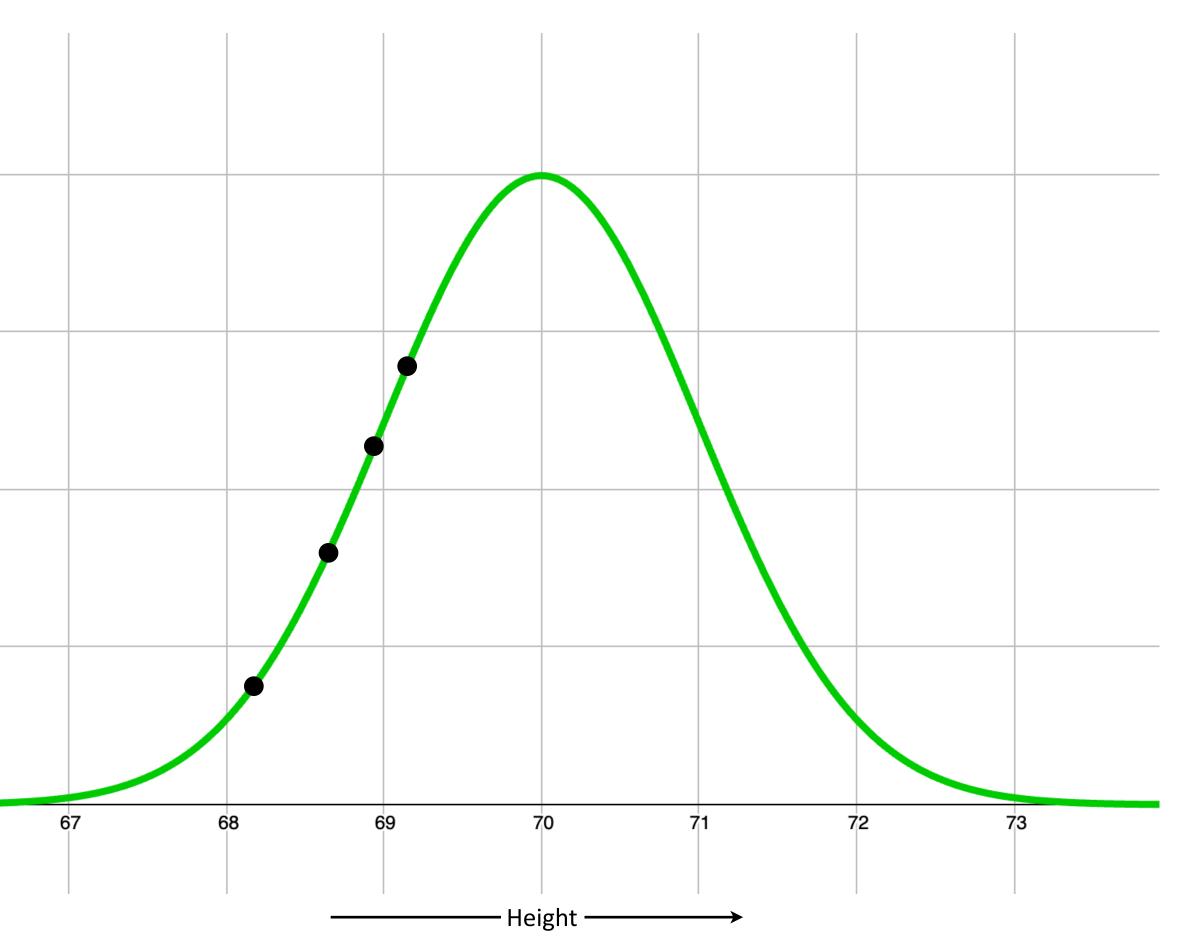
Mean = μ Variance = σ^2

Log Likelihood

Multiple points on the curve: Sum of the log of the likelihoods of every point

Probability Density Function

robability Density



A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

Mean = μ Variance = σ^2

Probability Density Function

A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

Mean = μ Variance = σ^2

Probability Density Function $f(x \mid \mu, \sigma^2)$

Probability Density Function

Probability Density function: Function that returns the probability of x within a range given fixed parameters μ and σ

A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

Mean = μ Variance = σ^2

Probability Density Function $f(x \mid \mu, \sigma^2)$

Likelihood Function $\mathscr{L}(\mu, \sigma^2 | x)$

Probability Density Function

Probability Density function: Function that returns the probability of x within a range given fixed parameters μ and σ

Likelihood function: Function that calculates the plausibility of x taking a specific value for parameters μ and σ

A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

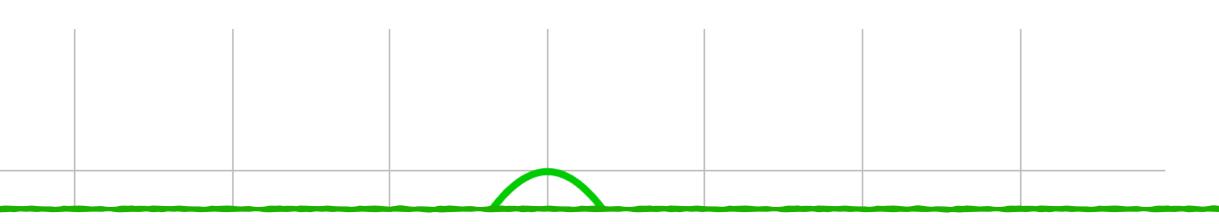
Mean = μ Variance = σ^2

Likelihood Function $\mathscr{L}(\mu, \sigma^2 | x)$

Likelihood function: Function that calculates the plausibility of x taking a specific value for parameters μ and σ

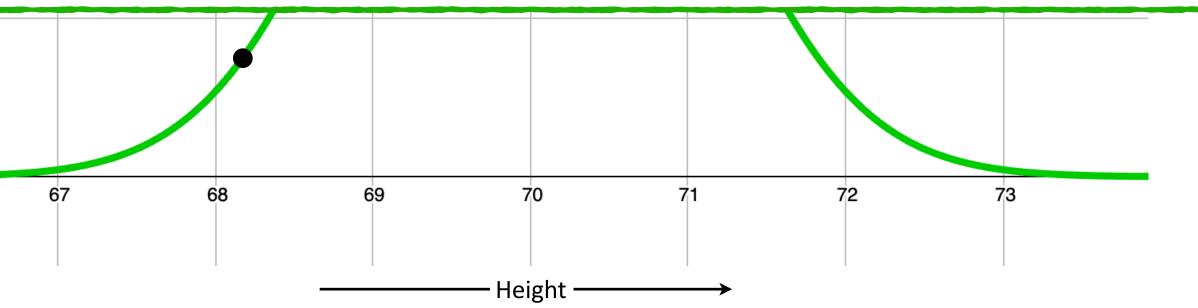
Maximum Likelihood Estimation

²robability Density



Maximum Likelihood Estimation: Find the

parameters μ and σ for which the Likelihood (product of the individual likelihoods) of a data set is maximized



A random variable with an infinite, uncountable set of outcomes

Example: X is the height of a citizen of Bulgaria

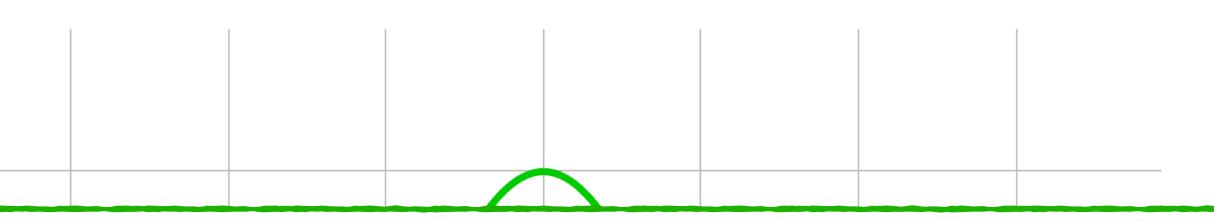
Mean = μ Variance = σ^2

Likelihood Function $\mathscr{L}(\mu, \sigma^2 | x)$

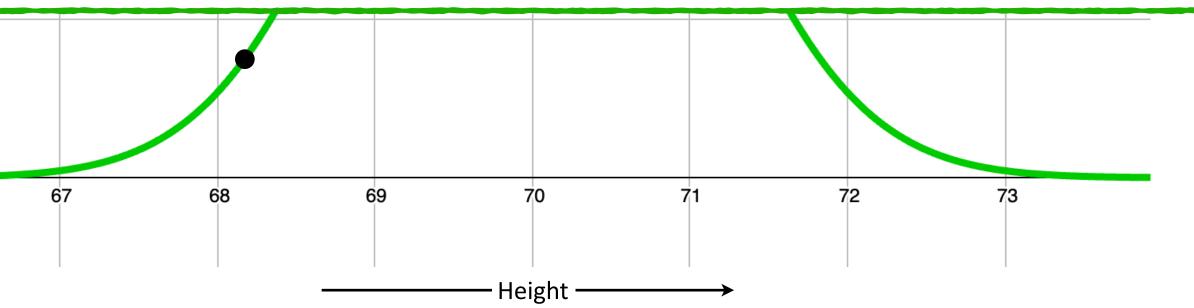
Likelihood function: Function that calculates the plausibility of x taking a specific value for parameters μ and σ

Maximum Likelihood Estimation

²robability Density



- Maximum Likelihood Estimation: Find the
 - parameters μ and σ for which the Log Likelihood (sum of the individual log likelihoods) of a data set is maximized



Lets review some well known probability distributions

Copyright (c) 2025, <u>Rahul Singh</u>, licensed under CC BY-NC-SA 4.0 (<u>https://creativecommons.org/licenses/by-nc-sa/4.0/</u>)

Normal Distribution: The normal distribution is symmetric around the mean - outcomes near the mean occur more frequently than those further away from the mean. Also known as the Gaussian Distribution and characterized by the "Bell Curve"

Parameters:

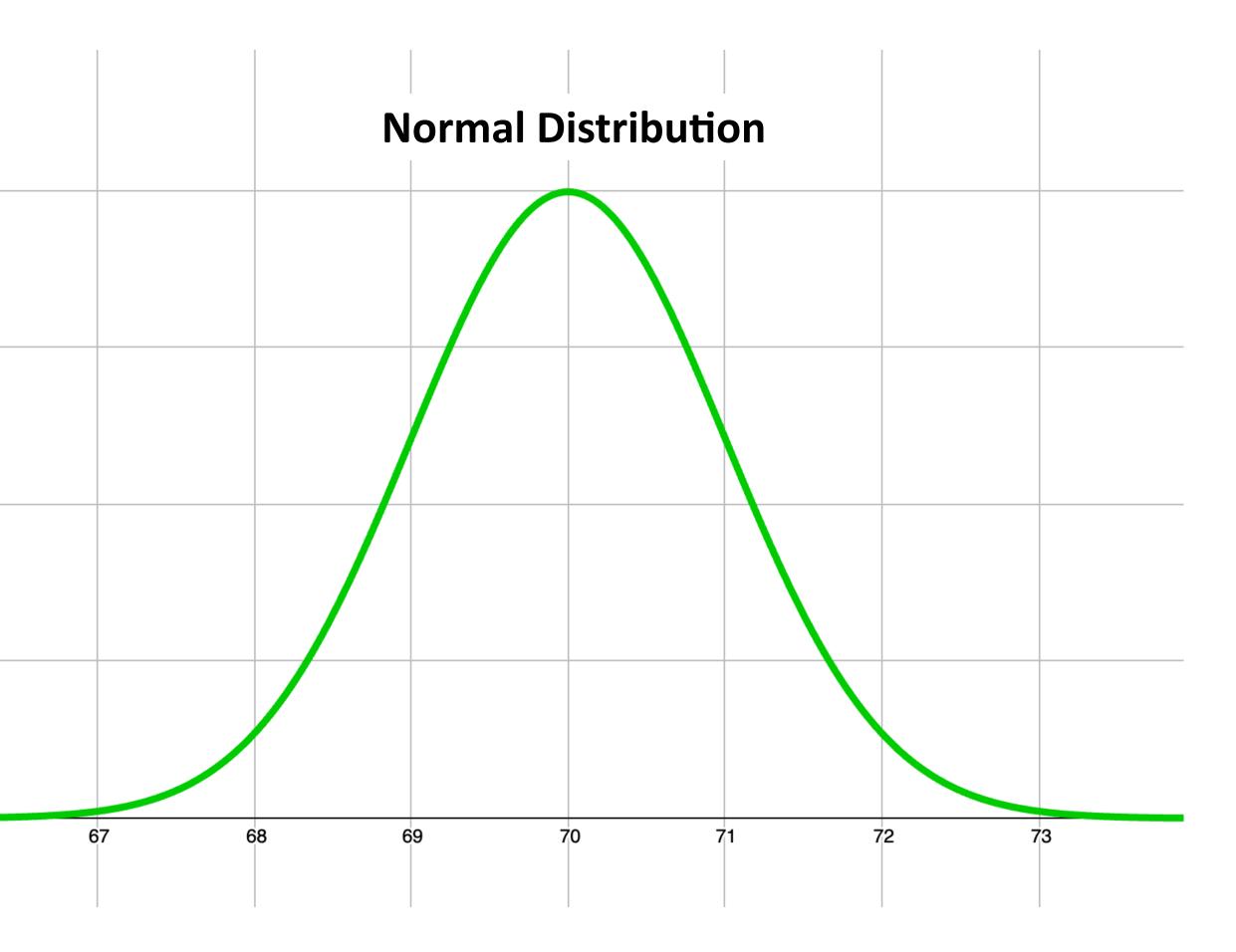
Mean = μ Variance = σ^2

Probability Density Function (PDF)

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

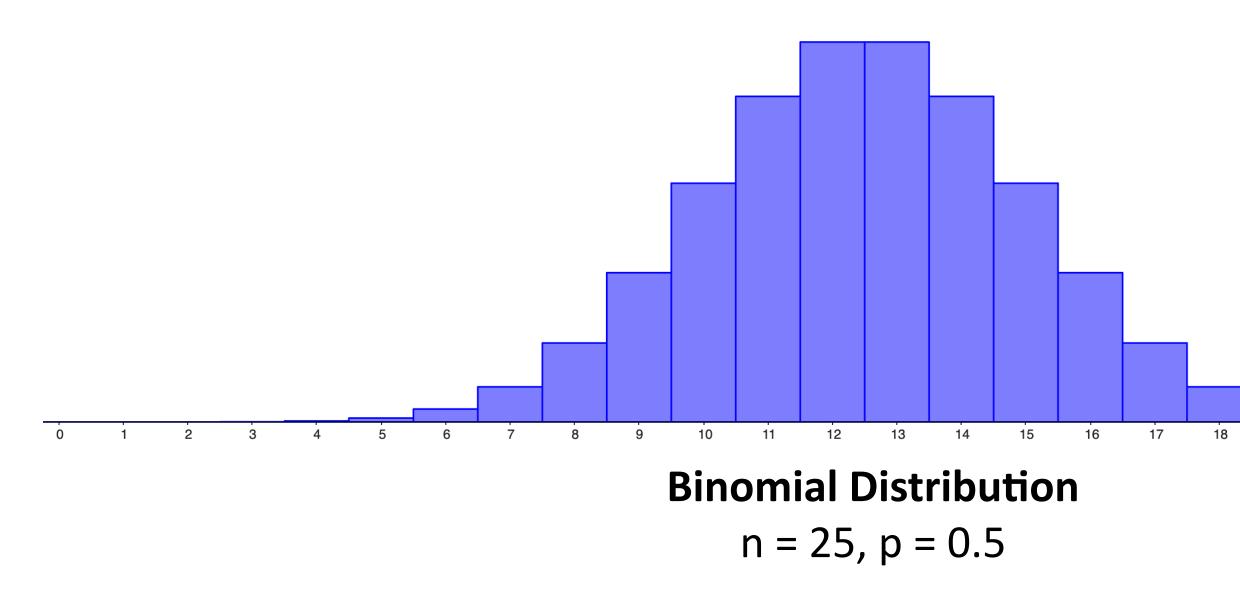
Normal Distribution



Binomial Distribution: A Discrete Probability distribution of the number of successful with probability p and false with a probability 1 - p

Parameters:

Number of trials = nProbability of success of each trial = p



Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Binomial Distribution

outcomes in a sequence of n independent trials where each trial has binary outcome - true

Probability Mass Function (PMF) Probability of getting k successes in n independent Bernoulli trials

$$p(X = k) = \binom{n}{k} p^k (1 - p)^{(n-k)}$$
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Bernoulli Distribution: A Discrete Probability distribution of a random variable that has an outcome of 1 with a probability p and an outcome of 0 with probability 1 - p. Its a special case of the binomial distribution with n = 1 (a single trial)

Parameters:

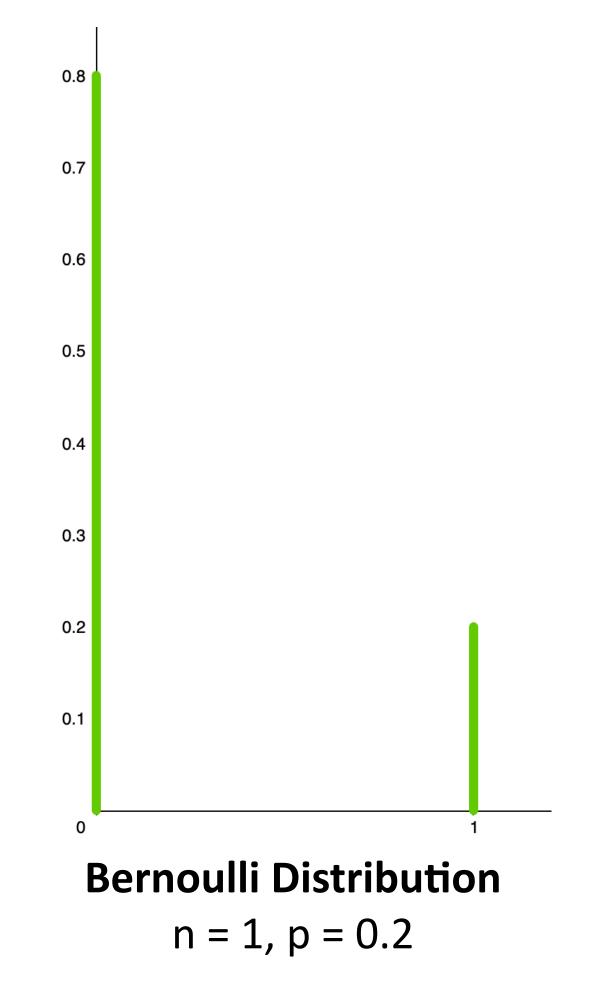
$$p(X = 1) = p$$

 $p(X = 0) = 1 - p$

Probability Mass Function (PMF)

$$f(x) = \begin{cases} p, & \text{if } x = 1 \\ 1 - p, & \text{if } x = 0 \end{cases}$$
$$f(x) = p^k (1 - p)^{1 - k}$$

Bernoulli Distribution



Probability of an Event Occurring The number of desired outcomes divided by the total number of outcomes

 $P(X) = \frac{Number of Desired Outcomes}{Total Number of Outcomes}$

Odds of an Event Occurring

The Probability that the event will occur divided by the probability that the event will not occur

$$O(X) = \frac{p}{1-p}$$

Probability vs Odds

Logistic Regression

An introduction to Logistic Regression. A Logistic Regression model use used to predict a binary value (the dependent variable) for one or more independent variables using a threshold to classify a probability.

Multiple Regression

Multiple regression extends the two dimensional linear model introduced in Simple Linear Regression to k + 1 dimensions with one dependent variable, k independent variables and k+1 parameters.

Cost Function & Gradient Descent for Logistic Regression

An introduction to the Cost function for Logistic Regression long with its partial derivative (the gradient vector). The model parameters (B & W) are then optimized using Maximum Likelihood Estimation and Gradient Descent.

Related Tutorials & Textbooks

For a complete list of tutorials see: https://arrsingh.com/ai-tutorials

